1、课时作业(十六)对数A组基础巩固1log3等于()A4 B4C. D解析:设log3x,则3x34,x4.答案:B2已知log2x3,则x等于()A. B.C. D.解析:log2x3,x238,x8,故选D.答案:D3方程2log3x的解是()A9 B.C. D.解析:2log3x22,log3x2,x32,故选D.答案:D4log5log3(log2x)0,则x等于()A. B.C. D.解析:log5log3(log2x)0,log3(log2x)1,log2x3,x238.x8,故选C.答案:C5若log2(log3x)log3(log4y)log4(log2z)0,则xyz的值为()
2、A9 B8C7 D6解析:log2(log3x)0,log3x1,x3.同理y4,z2.xyz9.答案:A6设f(x),则ff(2)的值为()A0 B1C2 D3解析:f(2)log3(221)log331,则ff(2)f(1)2e02,故选C.答案:C7若a0,a2,则loga_.解析:a0,且a2,a,loga1.答案:18若loga2m,loga3n,则a2mn_.解析:loga2m,am2,a2m4,又loga3n,an3,a2mna2man4312.答案:129计算:_.解析:原式4.答案:410(1)求值:0.16(2013)016log2;(2)解关于x的方程:(log2x)22
3、log2x30.解析:(1)原式0.42124log2211231810.(2)设tlog2x,则原方程可化为t22t30,即(t3)(t1)0,解得t3或t1,log2x3或log2x1,x8或x.B组能力提升11已知log2log3(log4x)log3log4(log2y)0,则xy_.解析:由题意得即故xy641680.答案:8012计算下列各式的值(1)23log25;(2)4log29.解析:(1)23log25.(2)4log292log299.13求下列各式的值(1)log81;(2)lg0.001;(3)log(2)(2)解析:(1)设log81m,则m81,又81344,m
4、4.m4,即log814.(2)设lg0.001n,则10n0.001.又0.001103,10n103.n3,即lg0.0013.(3)设log(2)(2)p,则(2)p2.又2(2)1,(2)p(2)1,p1.log(2)(2)1.14已知二次函数f(x)(lga)x22x4lga的最大值为3,求a的值解析:原函数式可化为f(x)lga24lga.f(x)有最大值3,lga0,且4lga3,整理得4(lga)23lga10,解之得lga1或lga.又lga0,lga.a10.15.已知M0,1,Nlga,2a,a,11a,是否存在a的值,使MN1?解析:不存在a值,使MN1成立若lga1,则a10,此时11a1,从而11alga1,与集合元素的互异性矛盾;若2a1,则a0,此时lga无意义;若a1,此时lga0,从而MN0,1,与条件不符;若11a1,则a10,从而lga1,与集合元素的互异性矛盾综上,不存在a的值,使MN1