ImageVerifierCode 换一换
格式:DOC , 页数:19 ,大小:1.43MB ,
资源ID:914208      下载积分:9 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-914208-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《解析》河北省沧州市盐山县盐山中学2019-2020学年高一下学期开学考试数学试题 WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《解析》河北省沧州市盐山县盐山中学2019-2020学年高一下学期开学考试数学试题 WORD版含解析.doc

1、数学试卷一单选题1.设为等差数列的前项和,若,则A. B. C. D. 【答案】C【解析】【分析】由等差数列求和的性质,结合等差数列通项公式,求得首项与公差;再将化简即可求解【详解】根据等差数列的求和公式 化简得,根据等差数列通项公式得解方程组得 所以选C【点睛】本题考查了等差数列通项公式、求和公式的简单应用,利用等差数列的性质可简化运算过程,属于基础题2.如图,中,以AC所在直线为轴旋转一周,所得几何体的表面积等于A. B. C. D. 【答案】A【解析】【分析】由题意得旋转体为圆锥,底面半径为3,高为4,母线长为5,利用圆锥的表面积计算公式,即可求出表面积【详解】解:由题意可得旋转体为圆锥

2、,底面半径为3,高为4,故它的母线长,侧面积为,而它底面积为,故它的表面积为,故选A【点睛】本题主要考查圆锥的表面积计算公式,属于基础题3.在中,已知的平分线,则的面积( )A. B. C. D. 【答案】D【解析】【分析】根据和可求得,利用同角三角函数和二倍角公式可求得,代入三角形面积公式求得结果.【详解】为角平分线 ,即 则本题正确选项:【点睛】本题考查三角形面积公式的应用,关键是能够通过面积桥的方式,借助角平分线可构造出关于三角函数值的方程,从而使得问题得以求解.4.已知不等式的解集是,则不等式的解集是( )A. B. C. D. 【答案】A【解析】【分析】根据所给的不等式的解集,并结合

3、一元二次方程根与系数的关系求出的值,然后再解不等式即可【详解】不等式的解集是,是方程的两根,解得不等式为,解得,不等式的解集为故选A【点睛】本题考查二次不等式的解法,解题时注意结合“三个二次”间的关系,注意不等式解集的端点值、二次方程的根与二次函数图象与x轴交点横坐标间的关系,解题的关键是根据条件求出的值5.圆上到直线的距离为的点共有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】通过计算可知:圆心到直线的距离等于圆的半径的一半,由此可得结论.【详解】圆可化为,所以圆心为,半径为2,圆心到直线的距离为:,所以,所以圆上到直线的距离为的点共有3个.故选:C【点睛】本题考查

4、了由圆的方程求圆心坐标和半径,考查了点到直线的距离公式,属于基础题.6.若直线与曲线没有公共点,则实数m所取值范围是( )A. B. C. D. 【答案】B【解析】【分析】曲线是下半圆,先求出直线与曲线有公共点时的范围,然后可得题设结论【详解】如图,是曲线,它是以为圆心,1为半径的圆的下半部分,当直线过时,当直线与曲线相切时,(舍去),由直线方程知是直线的纵截距,所以直线与曲线没有公共点时,或故选B【点睛】本题考查直线与圆的关系,解题时注意曲线只是半圆,因此直线与半圆有公共点不仅要考虑切线,还要考虑直线过半圆弧的端点,然后结合图形得解7.若点和都在直线上,又点和点,则( )A. 点和都不在直线

5、上B. 点和都在直线上C. 点在直线上且不在直线上D. 点不在直线上且在直线上【答案】B【解析】由题意得:,易得点满足由方程组得,两式相加得,即点 在直线上,故选B.8.已知圆柱的底面半径为2,高为3,垂直于圆柱底面的平面截圆柱所得截面为矩形(如图)若底面圆的弦所对的圆心角为,则圆柱被分成两部分中较大部分的体积为( )A. B. C. D. 【答案】A【解析】【分析】利用较大部分与圆柱的体积比等于面积比列方程可解得答案.【详解】设截面将圆柱分成的两部分中较大部分的体积为,圆柱的体积为, 将圆柱的底面分成的两部分中,较大部分的面积为,圆柱的底面积为,则,所以依题意可得,所以.,故选:A【点睛】本

6、题考查了利用圆柱的体积公式计算体积,利用较大部分与圆柱的体积比等于面积比列方程是解题关键,属于基础题.9.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km,速度为1000km/h,飞行员先看到山顶的俯角为,经过1 min后又看到山顶的俯角为,则山顶的海拔高度为(精确到0.1 km,参考数据:)A. 11.4 kmB. 6.6 kmC. 6.5 kmD. 5.6 km【答案】C【解析】【分析】根据题意求得和的长,然后利用正弦定理求得BC,最后利用求得问题答案.【详解】在中,根据正弦定理,所以:山顶的海拔高度为18-11.5=6.5 km.故选:C【点睛】本题考查了正弦定理在实

7、际问题中的应用,考查了学生数学应用,转化与划归,数学运算的能力,属于中档题.10.在各项均为正数的等比数列中,公比,若,数列的前项和为,则当取最小值时,的值为( )A. 4B. 6C. 4或5D. 5或6【答案】C【解析】【分析】由题意求出等比数列的公比,然后求出等比数列的通项公式,代入,得到数列为等差数列,求出的表达式,利用二次函数的性质判断最小值,进而求出的值即可【详解】是等比数列且,公比,可得:,解得或(舍去),则,则数列的前项和,所以或5时,取最小值故选:C【点睛】本题考查了等比数列的基本量运算,考查了等差关系的确定、等差数列的求和公式以及等差数和的最值等知识,是中档题二多选题11.在

8、公比为整数的等比数列中,是数列的前项和,若,则下列说法正确的是( )A. B. 数列是等比数列C. D. 数列是公差为2的等差数列【答案】ABC【解析】【分析】由,公比为整数,解得,可得,进而判断出结论.【详解】,且公比为整数,或(舍去)故A正确,故C正确;,故数列是等比数列,故B正确;而,故数列是公差为lg2的等差数列,故D错误故选:ABC.【点睛】本题主要考查了等比数列的通项公式和前项和公式以及综合运用,属于中档题12.在三角形中,下列命题正确的有( )A. 若,则三角形有两解B. 若,则一定是钝角三角形C. 若,则一定是等边三角形D. 若,则的形状是等腰或直角三角形【答案】BCD【解析】

9、【分析】利用正弦定理可得A错误,由可推出,然后可得B正确,由得,然后可推出C正确,由可得,然后可推出D正确.【详解】因为,所以由正弦定理得,所以角只有一个解,故A错误由,即 所以,即所以,所以,故一定是钝角三角形故B正确因为所以所以,故C正确因为所以所以因为所以,所以或所以或,所以形状是等腰或直角三角形故选:BCD【点睛】本题考查的是正弦定理及三角形的和差公式在解三角形中的应用,属于中档题.三填空题13.在数列中,已知,则=_【答案】【解析】【分析】利用累加法求得,再利用裂项求和法求得数列的前项和.【详解】因为,故可得,累加可得,又因为,则,故可得,则.故答案为:.【点睛】本题考查利用累加法求

10、数列的通项公式,以及用裂项求和法求数列的前项和,属中档题.14.已知三棱锥中,则三棱锥的体积是_.【答案】【解析】【分析】由题意利用勾股定理,可证明平面,结合棱锥体积公式即可求解.【详解】因为,所以,则,所以,又因为,即,平面,所以平面,又由于,所以,故答案为:【点睛】本题主要考查了棱锥体积的计算,考查线面垂直的证明,考查计算能力与推理能力,属于中档题.15.已知圆上一动点,定点,轴上一点,则的最小值等于_.【答案】【解析】【分析】根据题意画出示意图,进而数形结合求解;【详解】根据题意画出圆,以及点B(6,1)的图象如图,作B关于x轴的对称点,连接圆心与,则与圆的交点A,即为的最小值,为点(0

11、,2)到点(6,-1)的距离减圆的半径,即,故答案为:【点睛】考查“将军饮马”知识,数形结合的思想,画出图形,做出B点的对称点是解决本题的突破点;16.设的内角所对的边分别为,且满足,的周长为,则面积的最大值为_.【答案】【解析】【分析】利用余弦定理,求得;再利用均值不等式即可求得的最大值,则问题得解.【详解】因为,故可得即,整理得,故可得.又三角形为直角三角形,故可得即解得,当且仅当时取得最大值.则其面积.故三角形面积的最大值为.故答案为:.【点睛】本题考查正弦定理的综合应用,以及利用均值不等式求最值,属综合中档题.四解答题17.已知直线经过点(2,5),且斜率为 (1)求直线的方程;(2)

12、若直线与平行,且点到直线的距离为3,求直线的方程.【答案】(1) 3x4y140;(2) 3x4y10或3x4y290.【解析】【分析】(1)代入点斜式方程求直线 的方程;(2)根据(1)设的方程为,将点到直线的距离转化为平行线的距离求.【详解】(1)由点斜式方程得,.(2)设的方程为,则由平线间的距离公式得,解得:或.或【点睛】本题考查求直线方程,意在考查基础知识,属于简单题型.18.在中,分别为内角所对的边,已知,其中为外接圆的半径,其中为的面积(1)求;(2)若,求的周长【答案】(1);(2)【解析】【分析】(1)由正弦可得,进而可得,从而得,结合余弦定理可得,再由即可得解;(2)由正弦

13、定理得,从而可得,结合由正弦定理可得,从而得解.【详解】(1)由正弦定理得,又,则.由,由余弦定理可得,又,.(2)由正弦定理得,又,又 .【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.19.已知数列是以为首项,为公比的等比数列,(1)求数列的通项公式;(2)若,求数列的前项和【答案】(1);(2)【解析】【分析】(1)按等比数列的概念直接求解即可;(2)先求出的表达式,再利用裂项相消法即可求

14、得数列的前项和.【详解】(1)由等比数列通项公式得:(2)由(1)可得:【点睛】本题主要考查数列的通项公式问题及利用裂项相消法求和的问题,属常规考题.20.已知不等式的解集为或.(1)求;(2)解关于的不等式【答案】(1)a1,b2;(2)当c2时,解集为x|2xc;当c2时,解集为x|cx2;当c2时,解集为【解析】【分析】(1)根据不等式ax23x+64的解集,利用根与系数的关系,求得a、b的值;(2)把不等式ax2(ac+b)x+bc0化为x2(2+c)x+2c0,讨论c的取值,求出对应不等式的解集【详解】(1)因为不等式ax23x+64解集为x|x1,或xb,所以1和b是方程ax23x

15、+20的两个实数根,且b1;由根与系数关系,得,解得a1,b2;(2)所求不等式ax2(ac+b)x+bc0化为x2(2+c)x+2c0,即(x2)(xc)0;当c2时,不等式(x2)(xc)0的解集为x|2xc;当c2时,不等式(x2)(xc)0的解集为x|cx2;当c2时,不等式(x2)(xc)0的解集为【点睛】本题考查了不等式的解法与应用问题,也考查了不等式与方程的关系,考查了分类讨论思想,是中档题21.已知数列满足.(1)证明数列为等差数列;(2)若,求数列的前项和.【答案】(1)证明见解析(2)【解析】【分析】(1)当时,由;得到,两式相减得,再根据等差数列的定义证明.(2)由题可知

16、,利用错位相减法求解.【详解】(1)当时,;当时,由;得,-得,当时符合,即,则,所以数列为等差数列.(2)由题可知.所以,-得,所以.【点睛】本题主要考查数列的通项与前n项和间的关系和错位相减法求和,还考查了运算求解的能力,属于中档题.22.已知点在圆上运动,且存在一定点,点为线段的中点.(1)求点的轨迹的方程;(2)过且斜率为的直线与点的轨迹交于不同的两点,是否存在实数使得,并说明理由.【答案】(1);(2)见解析.【解析】分析:(1)由中点坐标公式,可得,.点在圆上,据此利用相关点法可得轨迹方程为.(2)设,联立直线与圆的方程可得,由直线与圆有两个交点可得,结合韦达定理可得,.则.解得或1,不合题意,则不存在实数使得.详解:(1)由中点坐标公式,得即,.点在圆上运动,即,整理,得.点的轨迹的方程为.(2)设,直线的方程是,代入圆.可得,由,得,且, .解得或1,不满足.不存在实数使得.点睛:与圆有关的探索问题的解决方法:第一步:假设符合要求的结论存在第二步:从条件出发(即假设)利用直线与圆的关系求解第三步:确定符合要求的结论存在或不存在第四步:给出明确结果第五步:反思回顾,查看关键点,易错点及答题规范

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3