1、2.2等差数列的前n项和(一) 双基达标(限时20分钟)1等差数列an的前n项和为Sn,且S36,a34,则公差d等于 ()A1 B. C2 D3解析设an首项为a1,公差为d,则S33a1d3a13d6,a3a12d4,a10,d2.答案C2已知等差数列an的前n项和Snn2n,则过P(1,a1),Q(2,a2)两点的直线的斜率是()A1 B2 C3 D4解析Snn2n,a1S12,a2S2S1624.过P、Q两点直线的斜率k2.答案B3记等差数列an的前n项和为Sn,若a1,S420,则S6 ()A16 B24 C36 D48解析S426d20,d3.故S6315d48.答案D4等差数列a
2、n的前n项和为Sn,且6S55S35,则a4_.解析由题意知6515a145d15(a13d)15a45,故a4.答案5在等差数列an中,a32a822a3a89,且an0,则S10_.解析由a32a822a3a89得(a3a8)29,an0,a3a83,S1015.答案156已知等差数列an的前n项和记为Sn,a515,a1025.(1)求通项an;(2)若Sn112,求n.解(1)设等差数列an的首项为a1,公差为d,a515,a14d15a1025,a19d25,解组成的方程组得:a17,d2.an7(n1)22n5.(2)Sn112,7nn(n1)2112.即n26n1120,解之得n
3、14(舍去)或n8,故n8.综合提高(限时25分钟)7已知数列an的通项公式为an23n,则an的前n项和Sn等于 ()An2 Bn2C.n2 D.n2解析an23n,Sn23123223n2n3(123n)2n3n2.故选A.答案A8已知等差数列an满足a2a44,a3a510,则它的前10项和S10 ()A138 B135 C95 D23解析设数列an的公差为d,因为a2a44,a3a510,所以有解得a14,d3,所以S1010(4)395,故选C.答案C9设Sn为等差数列an的前n项和,若S33,S624,则a9_.解析由已知条件可得解得a9a18d15.答案1510设Sn为等差数列a
4、n的前n项和,若a41,S510,则当Sn取得最大值时,n的值为_解析由a41,S510,得a13d1,5a1d10,解得a14,d1,因为Snn2nn2n,又n为正整数,所以当n的值为4或5时,Sn取得最大值故填4或5.答案4或511设an为等差数列,Sn为数列an的前n项和,已知S77,S1575,Tn为数列的前n项和,求Tn.解设等差数列an的公差为d,则Snna1n(n1)d.由S77,S1575,得即解得a1(n1)d2(n1),数列是首项为2,公差为的等差数列根据题意得Tn2nn(n1)n2n.即Tnn2n.12(创新拓展)已知数列an的前n项和为Sn(Sn0),且满足an2SnSn10(n2),a1.(1)求证:是等差数列;(2)求数列an的通项公式解(1)an2SnSn1,SnSn12SnSn1(n2),又Sn0(n1,2,3,)2.又2,是以2为首项,2为公差的等差数列(2)由(1)可知2(n1)22n,Sn.当n2时,anSnSn1(或n2时,an2SnSn1);当n1时,S1a1.an