1、2.1两角差的余弦函数 2.2两角和与差的正弦、余弦函数课时跟踪检测一、选择题1在ABC中,cosAcosBsinAsinB,则ABC为()A锐角三角形B直角三角形C钝角三角形 D无法判定解析:cosAcosBsinAsinB,cosAcosBsinAsinB0,cos(AB)0,cos(C)0,cosC0,C为钝角,选C.答案:C2化简cos()cossin()sin得()Acos BcosCcos(2) Dsin(2)解析:原式cos()cos.答案:B3设函数f(x)sincos,则()Ayf(x)在单调递增,其图像关于直线x对称Byf(x)在单调递增,其图像关于直线x对称Cyf(x)在
2、单调递减,其图像关于直线x对称Dyf(x)在单调递减,其图像关于直线x对称解析:f(x)sincossin2xcoscos2xsincos2xcossin2xsincos2x,f(x)在单调递减,其图像关于直线x对称答案:D4已知sin()coscos()sin0,则sin(2)sin(2)等于()A1 B1C0 D1解析:由已知得,sin()0,sin0.k,kZ.当k为偶数时,sin(2)sin(2)sin2sin(2)0;当k为奇数时,sin(2)sin(2)sin2sin20.故选C.答案:C5已知cos(),sin,且,则sin等于()A. BC D解析:由于,则0.则sin().又
3、sin,则cos.则sinsin()sin()coscos()sin.答案:A6已知cossin,则sin的值是()A BC D解析:cossincoscossinsinsincossinsin,sin.sinsinsin.答案:C二、填空题7已知向量a(cos75,sin75),b(cos15,sin15),那么|ab|等于_解析:|ab|1.答案:18设当x时,函数f(x)sinxcosx取得最大值,则cos_.解析:f(x)222sin.当x2k,kZ,即x2k,kZ时,f(x)取得最大值coscos.答案:9(2017全国卷)已知,tan2,则cos_.解析:tan2,sin,cos,
4、coscoscossinsin.答案:三、解答题10已知sin()coscos()sin,是第三象限角,求sin的值解:由sin()coscos()sin,知sin(),sin.为第三象限角,cos.sin(sincos).11(2018浙江卷)已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P.(1)求sin()的值;(2)若角满足sin(),求cos的值解:(1)由角的终边过点P,得sin,所以sin()sin.(2)由角的终边过点P,得cos,由sin(),得cos().由(),得coscos()cossin()sin,所以cos或cos.12设cos,sin且,0,求cos.解:,0,又cos,sin,sin ,cos .coscoscoscossinsin.13已知a,b是两不共线的向量,且a(cos,sin),b(cos,sin)(1)求证:ab与ab垂直;(2)若,且ab,求sin.解:(1)证明:a2cos2sin21,b2cos2sin21.(ab)(ab)a2b20.即(ab)(ab)(2)由已知abcoscossinsincos,且ab,cos.由,得0.sin .sinsinsincoscossin.