收藏 分享(赏)

2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx

上传人:高**** 文档编号:90317 上传时间:2024-05-25 格式:PPTX 页数:68 大小:3.44MB
下载 相关 举报
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第1页
第1页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第2页
第2页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第3页
第3页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第4页
第4页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第5页
第5页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第6页
第6页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第7页
第7页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第8页
第8页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第9页
第9页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第10页
第10页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第11页
第11页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第12页
第12页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第13页
第13页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第14页
第14页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第15页
第15页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第16页
第16页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第17页
第17页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第18页
第18页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第19页
第19页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第20页
第20页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第21页
第21页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第22页
第22页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第23页
第23页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第24页
第24页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第25页
第25页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第26页
第26页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第27页
第27页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第28页
第28页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第29页
第29页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第30页
第30页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第31页
第31页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第32页
第32页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第33页
第33页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第34页
第34页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第35页
第35页 / 共68页
2017版考前三个月高考数学(全国甲卷通用理科)知识课件 方法篇 专题6 立体几何与空间向量 第28练 .pptx_第36页
第36页 / 共68页
亲,该文档总共68页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、专题6 立体几何与空间向量第28练 空间向量解决立体几何问题的两大策略“选基底”与“建系”向量作为一个工具,其用途是非常广泛的,可以解决现高中阶段立体几何中的大部分问题,不管是证明位置关系还是求解问题.而向量中最主要的两个手段就是选基底与建立空间直角坐标系.在高考中,用向量解决立体几何解答题,几乎成了必然的选择.题型分析 高考展望 体验高考 高考必会题型 高考题型精练 栏目索引 1.(2016 北京)如图,在四棱锥PABCD中,平面PAD平面ABCD,PAPD,PAPD,ABAD,AB1,AD2,ACCD 5.(1)求证:PD平面PAB;体验高考 123证明 平面PAD平面ABCD,平面PAD

2、平面ABCDAD.又ABAD,AB平面ABCD.AB平面PAD.PD平面PAD.ABPD.又PAPD,PAABA.PD平面PAB.解析答案(2)求直线PB与平面PCD所成角的正弦值;123解析答案(3)在棱 PA 上是否存在点 M,使得 BM平面 PCD?若存在,求AMAP的值;若不存在,说明理由.解析答案 123解析答案 1232.(2016天津)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF平面ABCD,点G为AB的中点,ABBE2.(1)求证:EG平面ADF;解析答案 123(2)求二面角OEFC的正弦值;(3)设 H 为线段 AF 上的点,且 AH23HF,求直线

3、BH 和平面 CEF 所成角的正弦值.123解析答案 3.(2016课标全国乙)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF2FD,AFD90,且二面角DAFE与二面角CBEF都是60.(1)证明:平面ABEF平面EFDC;123解析答案 证明 由已知可得AFDF,AFFE,所以AF平面EFDC,又AF平面ABEF,故平面ABEF平面EFDC.返回 解析答案(2)求二面角EBCA的余弦值.123 高考必会题型 题型一 选好基底解决立体几何问题 例1 如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点.(1)求证:MNAB,M

4、NCD;解析答案(2)求MN的长;解析答案 解 由(1)可知MN 12(qrp),|MN|2MN 214(qrp)214a2a2a22(a22 a22 a22)142a2a22.|MN|22 a,MN 的长为 22 a.14q2r2p22(qrpqrp)(3)求异面直线AN与CM夹角的余弦值.解析答案 点评(1)求异面直线GE与PC所成角的余弦值;解析答案 变式训练 1 如图,在四棱锥 PGBCD 中,PG平面 GBCD,GDBC,GD34BC,且 BGGC,GBGC2,E 是 BC 的中点,PG4.解 设F(0,y,z),解析答案(2)若 F 点是棱 PC 上一点,且DF GC 0,PFkC

5、F,求 k 的值.则DFGFGD(0,y,z)(32,32,0)(32,y32,z),GC(0,2,0).DF GC 0,(32,y32,z)(0,2,0)2(y32)0,y32.在平面PGC内过F点作FMGC,M为垂足,则 GM32,MC12,PFFCGMMC3,k3.题型二 建立空间直角坐标系解决立体几何问题 例2(2016山东)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点,求证:GH平面ABC;解析答案 解析答案 点评(2)已知 EFFB12AC2 3,ABBC,求二面角 FBCA 的余弦值.变式训练2

6、在边长是2的正方体ABCDA1B1C1D1中,E,F分别为AB,A1C的中点,应用空间向量方法求解下列问题.(1)求EF的长;解 如图建立空间直角坐标系,则A1(2,0,2),A(2,0,0),B(2,2,0),C(0,2,0),D1(0,0,2),E(2,1,0),F(1,1,1),解析答案 EF(1,0,1),EF 2.返回(2)证明:EF平面AA1D1D;解析答案 证明 AD1(2,0,2),AD1EF,而EF平面AA1D1D,EF平面AA1D1D.(3)证明:EF平面A1CD.证明 EFCD 0,EFA1D 0,EFCD,EFA1D,又CDA1DD,EF平面A1CD.A.3B.1C.1

7、D.3 高考题型精练 12345解析 678910 11 12解析 BD1 AD ABAA1,x1,y1,z1,xyz1.1.如图,在正方体 ABCDA1B1C1D1 中,若BD1 xAD yABzAA1,则xyz 的值为()2.如图,在平行六面体 ABCDA1B1C1D1 中,M 为 AC 与 BD 的交点,若A1B1 a,A1D1 b,A1A c,则下列向量中与B1M 相等的向量是()A.12a12bcB.12a12bcC.12a12bcD.12a12bc解析 解析 由题意知,B1M B1A1 A1A AM 12345678910 11 12B1A1 A1A 12ACac12(ab)12a

8、12bc,故选 A.解析 12345678910 11 12A.1B.2C.13D.26 3.在四棱锥 PABCD 中,AB(4,2,3),AD(4,1,0),AP(6,2,8),则这个四棱锥的高 h 等于()A.ACBE B.EF平面ABCD C.三棱锥ABEF的体积为定值 D.异面直线AE,BF所成的角为定值 解析 12345678910 11 124.如图所示,正方体 ABCDA1B1C1D1 的棱长为 1,线段 B1D1 上有两个动点 E,F,且 EF 22,则下列结论中错误的是()解析 12345678910 11 125.若a(2x,1,3),b(1,2y,9),如果a与b为共线向

9、量,则()A.x1,y1B.x12,y12C.x16,y32D.x16,y32 解析 因为a与b为共线向量,所以存在实数使得ab,所以2x,12y,39,解得 x16,y32.6.已知空间四边形 OABC,其对角线为 OB,AC,M,N 分别是 OA,CB的中点,点 G 在线段 MN 上,且使 MG2GN,则用向量OA,OB,OC 表示向量OG 是()A.OG 16OA 13OB 13OCB.OG 16OA 13OB 23OCC.OG OA 23OB 23OCD.OG 12OA 23OB 23OC解析 12345678910 11 127.已知a(2,1,3),b(1,4,2),c(7,5,)

10、,若a,b,c三向量共面,则实数_.65712345678910 11 12解析 a,b,c三向量共面,则存在实数x,y,使cxayb,所以2xy7,x4y5,3x2y,解得 x337,y177,657.解析答案 8.如图所示,PD 垂直于正方形 ABCD 所在的平面,AB2,E 为 PB 的中点,cosDP,AE 33,若以 DA,DC,DP 所在直线分别为 x,y,z轴建立空间直角坐标系,则点 E 的坐标为_.解析 答案(1,1,1)12345678910 11 1212345678910 11 129.如图,在正方体 ABCDA1B1C1D1中,棱长为 a,M,N 分别为 A1B 和 A

11、C上的点,A1MAN 2a3,则 MN 与平面 BB1C1C 的位置关系是_.解析 答案 平行 则 D(0,0,0),E(a2,a,0),C1(0,a,a),F(a,a2,a),10.已知棱长为a的正方体ABCDA1B1C1D1中,E是BC的中点,F为A1B1的中点.(1)求证:DEC1F;证明 以D为原点,以DA,DC,DD1为x,y,z的正半轴建立空间直角坐标系,所以DE(a2,a,0),C1F(a,a2,0),DEC1F 0,解析答案 12345678910 11 12所以DEC1F.解析答案(2)求异面直线A1C与C1F所成角的余弦值.解 A1(a,0,a),C(0,a,0),A1C(

12、a,a,a),C1F(a,a2,0),cosA1C,C1F A1C C1F|A1C|C1F|32a23a 52 a 155,所以异面直线 A1C 与 C1F 所成角的余弦值是 155.12345678910 11 12解析答案 11.如图,在四棱锥PABCD中,PC底面ABCD,底面ABCD是直角梯形,ABAD,ABCD,AB2AD2CD2,E是PB的中点.(1)求证:平面EAC平面PBC;ACBC 2,AC2BC2AB2,12345678910 11 12证明 PC平面ABCD,AC平面ABCD,ACPC.AB2,ADCD1,ACBC,又BCPCC,AC平面PBC.AC平面EAC,平面EAC平面PBC.解析答案 12345678910 11 12(2)若二面角 PACE 的余弦值为 63,求直线 PA 与平面 EAC 所成角的正弦值.12.直四棱柱ABCDA1B1C1D1中,底面ABCD为菱形,且BAD60,A1AAB,E为BB1延长线上的一点,D1E平面D1AC.设AB2.(1)求二面角EACD1的大小;解析答案 12345678910 11 1212345678910 11 12返回 解析答案(2)在D1E上是否存在一点P,使A1P平面EAC?若存在,求D1PPE的值;若不存在,说明理由.本课结束 更多精彩内容请登录:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3