收藏 分享(赏)

2011年湖南汝城一中高二数学教案:2.3.2 双曲线的简单几何性质2(人教新课标A版选修2-1).doc

上传人:高**** 文档编号:90028 上传时间:2024-05-25 格式:DOC 页数:4 大小:296KB
下载 相关 举报
2011年湖南汝城一中高二数学教案:2.3.2 双曲线的简单几何性质2(人教新课标A版选修2-1).doc_第1页
第1页 / 共4页
2011年湖南汝城一中高二数学教案:2.3.2 双曲线的简单几何性质2(人教新课标A版选修2-1).doc_第2页
第2页 / 共4页
2011年湖南汝城一中高二数学教案:2.3.2 双曲线的简单几何性质2(人教新课标A版选修2-1).doc_第3页
第3页 / 共4页
2011年湖南汝城一中高二数学教案:2.3.2 双曲线的简单几何性质2(人教新课标A版选修2-1).doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家课题:232双曲线的简单几何性质(2) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标: 知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2)通过方程,研究曲线的性质理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;利用信息技术进一步见识圆锥曲线的统一定义 过程与方法目标让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能 情感、态度与价值观目标在合作、互动

2、的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新批 注教学重点:了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2)通过方程,研究曲线的性质理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念教学难点:掌握双曲线的标准方程、会用双曲线的定义解决实际问题。教学用具: 多媒体,三角板教学方法: 类比,探究教学过程:一、课前准备(预习教材P58 P60)复习1:说出双曲线的几何性质? 复习2:双曲线的方程为,其顶点坐标是( ),( );渐近线方程 二

3、、新课导学 学习探究探究1:椭圆的焦点是?探究2:双曲线的一条渐近线方程是,则可设双曲线方程为?问题:若双曲线与有相同的焦点,它的一条渐近线方程是,则双曲线的方程是? 典型例题例1双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面,它的最小半径为,上口半径为,下口半径为,高为,试选择适当的坐标系,求出此双曲线的方程例2点到定点的距离和它到定直线的距离的比是常数,求点的轨迹例3过双曲线的右焦点,倾斜角为的直线交双曲线于两点,求两点的坐标变式:求 ?思考:的周长? 动手试试练1若椭圆与双曲线的焦点相同,则=_.练2 若双曲线的渐近线方程为,求双曲线的焦点坐标 三、总结提升 学习小结1双曲

4、线的综合应用:与椭圆知识对比,结合; 2双曲线的另一定义; 3(理)直线与双曲线的位置关系 知识拓展双曲线的第二定义:到定点的距离与到定直线的距离之比大于1的点的轨迹是双曲线 学习评价 1若椭圆和双曲线的共同焦点为F1,F2,P是两曲线的一个交点,则的值为( )A B C D2以椭圆的焦点为顶点,离心率为的双曲线的方程( )A. B. C. 或 D. 以上都不对3过双曲线的一个焦点作垂直于实轴的直线,交双曲线于、,是另一焦点,若,则双曲线的离心率等于( )A. B. C. D. 4双曲线的渐近线方程为,焦距为,这双曲线的方程为_.5方程表示焦点在x轴上的双曲线,则的取值范围 课后作业 1已知双曲线的焦点在轴上,方程为,两顶点的距离为,一渐近线上有点,试求此双曲线的方程教学后记:.精品资料。欢迎使用。高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u 版权所有高考资源网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3