1、台州市书生中学2020年高一周练七(时间:120分钟满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分)1. 已知集合,集合,则( )A B C D 2.下列区间中,函数的零点所在区间为 ( )A B C D 3.函数的定义域 ( )ABCD 4. 在下列三个结论中,正确的有 ( )是的必要不充分条件在中,是为直角三角形的充要条件;若则“”是“不全为0”的充要条件.A B C D 5. 设则的大小关系为 ( )A. B C D6. 关于方程在内恰有一解,则( )A B. C D 7. 函数的定义域为,则函数的定义域为( )A.B.C.D.8. 已知函数 ( ) A B CD
2、二 多项选择题(本题共4小题,每天5分,共20分,每题给出的选项中,有多想符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9. 若则 ( ) A B. C. D 10. 已知函数有两个零点,以下结论正确的是 ( ) A BC. D 函数有四个零点 11. 已知函数若函数恰有两个零点,则实数可以是 ( ) A-1 B0 C1 D2 12. 某数学课外兴趣小组对函数的性质进行了探究,得到下列四个命题,其中真命题为 ( ) A函数的图像关于轴对称 B当时,是增函数,当是减函数 C. 函数的最小值是 D当是增函数三填空题(本题一共4小题,每小题5分,共20分)13. 函数的图像恒过的
3、定点为 。14. 已知函数在区间上的最大值比最小值大的值为 。 15.关于不等式恒成立,则的范围是_.16. 已知函数在区间上是减函数,则实数的取值范围是 。三 解答题(本题一共6小题,共70分)17.(本题满分10分) 计算下列各式的值.(); ()18.(12分)已知函数的图像经过点(1)比较的大小;(2)求函数的值域.19.(12)设集合,.(1)若,求.(2)若“”是“”的充分不必要条件,求实数的取值范围.20(12)已知函数.(1)若不等式的解集是,求实数与;(2)若,且不等式对任意恒成立,求实数的取值范围21(本题满分12分)已知函数()若在上单调递减,求实数的取值范围; ()当时
4、,解不等式22. (本题满分12分)函数(1) 当时,求满足方程的的值.(2) 若函数是定义在上的奇函数.若存在,使得不等式成立,求实数的取值范围;已知函数满足若对任意不等式恒成立,求实数的最大值.台州市书生中学2020年高一周练七答案单选题B C D C B B A A 多选题AD ABC ABC ACD 填空题:13. (-2,2) 14. 15. . 16. 17. (1) (2) 18.(1) (2)19.(1),.(2)因为“”是“”的充分不必要条件,所以,或, 20(1)解析:(利用一元二次不等式与方程的关系及韦达定理)由题意可得,且1,是方程的根,根据方程的根与系数关系可得,解得. (2)解析:(不等式恒成立转函数最值求解)对任意恒成立,即对任意恒成立,令,则,因为的对称轴方程为,且,所以当时,函数取得最大值,又因为,解得.21(1) (2)22. (1) (2) (3)