1、热点专题系列(三) 动力学中三种典型物理模型对应学生用书P062热点概述:动力学中三种典型物理模型分别是等时圆模型、传送带模型和滑块木板模型,通过本专题的学习,可以培养审题能力、建模能力、分析推理能力。热点透析 等时圆模型1模型分析如图甲、乙所示,质点沿竖直面内圆环上的任意一条光滑弦从上端由静止滑到底端,可知加速度agsin,位移x2Rsin,由匀加速直线运动规律xat2,得下滑时间t2,即沿竖直直径自由下落的时间。图丙是甲、乙两图的组合,不难证明有相同的结论。2结论模型1质点从竖直面内的圆环上沿不同的光滑弦上端由静止开始滑到环的最低点所用时间相等,如图甲所示;模型2质点从竖直面内的圆环上最高
2、点沿不同的光滑弦由静止开始滑到下端所用时间相等,如图乙所示;模型3两个竖直面内的圆环相切且两环的竖直直径均过切点,质点沿不同的光滑弦上端由静止开始经切点滑到下端所用时间相等,如图丙所示。3思维模板其中模型3可以看成两个等时圆,分段按上述模板进行时间比较。如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点。竖直墙上另一点B与M的连线和水平面的夹角为60,C是圆环轨道的圆心。已知在同一时刻a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道AM、BM运动到M点;c球由C点自由下落到M点。则()Aa球最先到达M点Bb球最先到达M点Cc球最先到达M点Db球和c球都可能最先
3、到达M点解析由等时圆模型知,a球运动时间小于b球运动时间,a球运动时间和沿过CM的直径的下落时间相等,所以从C点自由下落到M点的c球运动时间最短,故C正确。答案C 传送带模型传送带模型的特征是以摩擦力为纽带关联传送带和物块的运动。这类问题涉及滑动摩擦力和静摩擦力的转换、对地位移和二者间相对位移的区别,需要综合牛顿运动定律、运动学公式、功和能等知识求解。题型一:物块在水平传送带上题型概述:物块在水平传送带上可分为两种情形:一是物块轻放在水平传送带上;二是物块以一定的初速度冲上水平传送带。方法突破:已知传送带长为L,速度为v,与物块间的动摩擦因数为,则物块滑动时的加速度大小ag。1如图甲,v00时
4、,物块加速到v的位移x,若xL即v时,物块先加速后匀速;若xL即v时,物块一直加速到右端。2如图甲,当v00,v0与v同向时,当v0v时,物块加速到v的位移x,若xL,即v0vv时,物块减速到v的位移x,若xv,物块先减速后匀速;若xL,即v ,物块一直减速到右端;当vv0时,物块匀速运动到右端。3如图乙,v00,v0与v反向,物块向右减速到零的位移x,若xL,即v0,物块一直减速到右端;若xL,即v0,则物块先向右减速到零,再向左加速(也可能加速到v后匀速运动)直至离开传送带。拓展:若水平传送带匀变速运动,传送带与物块共速后,需讨论g与传送带加速度a的关系。若fmaxmgma,即ga,则物块
5、与传送带一起以加速度a匀变速运动;若fmaxmgma,即gv1,则()At2时刻,小物块离A处的距离达到最大Bt2时刻,小物块相对传送带滑动的距离达到最大C0t2时间内,小物块受到的摩擦力方向先向右后向左D0t3时间内,小物块始终受到大小不变的摩擦力作用解析小物块对地速度为零时,即t1时刻,向左离开A处最远,t2时刻,小物块相对传送带静止,此时不再相对传送带滑动,所以从开始到此刻,它相对传送带滑动的距离最大,A错误,B正确。0t2时间内,小物块受到的摩擦力为滑动摩擦力,方向始终向右,大小不变,t2时刻以后小物块相对传送带静止,与传送带一起以速度v1匀速运动,不再受摩擦力作用,C、D错误。答案B
6、题型二:物块在倾斜传送带上题型概述:物块在倾斜传送带上又可分为向上传送和向下传送两种情况,物块相对传送带速度为零时mgcos与mgsin的大小关系决定着物块是否会相对传送带下滑,tan时相对静止,tan时相对下滑。方法突破:一、传送带向上传送1如图甲,若0v0tan:(1)传送带比较短时物块一直以agcosgsin向上匀加速运动。(2)传送带足够长时物块先以agcosgsin向上匀加速运动再向上匀速运动。2如图甲,若0v0v且v且tan:(1)传送带比较短时物块一直以agcosgsin向上匀减速运动。(2)传送带足够长时物块先以agcosgsin向上匀减速运动再向上匀速运动。4如图甲,若v0v
7、且tan:(1)传送带比较短时物块一直以agcosgsin向上匀减速运动。(2)传送带足够长时物块先以agcosgsin向上匀减速运动再以agsingcos向上匀减速运动,最后向下匀加速运动。二、传送带向下传送1如图乙,若0v0tan:(1)传送带比较短时物块一直以agcosgsin向下匀加速运动。(2)传送带足够长时物块先以agcosgsin向下匀加速运动再向下匀速运动。2如图乙,若0v0v且v且tan:(1)传送带比较短时物块一直以agcosgsin向下匀减速运动。(2)传送带足够长时物块先以agcosgsin向下匀减速运动再向下匀速运动。4如图乙,若v0v且tan:物块一直以agsing
8、cos向下匀加速运动。总结:物块在倾斜传送带上的运动情形还有很多,但分析思路大体相同:(1)判断物块相对于传送带的运动方向,从而判断滑动摩擦力方向。(2)列牛顿第二定律方程,判断a的方向。(3)根据临界条件v物v带确定临界状态的情况,根据与tan的关系判断之后的运动情形。如图所示,倾角为37,长为l16 m的传送带,转动速度为v10 m/s,在传送带顶端A处无初速度释放一个质量为m0.5 kg的物体,已知物体与传送带间的动摩擦因数0.5,g取10 m/s2。求:(sin370.6,cos370.8)(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑
9、到底端B的时间。解析(1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,因tan,物体相对传送带向下匀加速运动,根据牛顿第二定律有:mg(sin37cos37)ma则agsin37gcos372 m/s2,根据lat2得t4 s。(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所受滑动摩擦力沿传送带向下,设物体的加速度大小为a1,由牛顿第二定律得mgsin37mgcos37ma1则有a110 m/s2设当物体运动速度等于传送带转动速度时经历的时间为t1,位移为x1,则有t1 s1 s,x1a1t5 mmgcos37,则下一
10、时刻物体相对传送带向下运动,受到传送带向上的滑动摩擦力摩擦力发生突变。设当物体下滑速度大于传送带转动速度时物体的加速度为a2,则a22 m/s2x2lx111 m又因为x2vt2a2t,解得:t21 s(t211 s舍去)所以t总t1t22 s。答案(1)4 s(2)2 s 滑块木板模型1模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的相互作用下发生相对滑动。2位移关系:滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差xx1x2L(或xx2x1L);滑块和木板反向运动时,位移之和xx2x1L。3分析滑块木板模型时要抓住一个转折和两个关联4
11、解决滑块木板模型中速度临界问题的思维模板如图所示,物块A和长木板B的质量均为1 kg,A与B之间、B与地面之间的动摩擦因数分别为0.5和0.2,开始时A静止在B的左端,B停在水平地面上。某时刻起给A施加一大小为10 N,方向与水平方向成37斜向上的拉力F,0.5 s后撤去F,最终A恰好停在B的右端。(sin370.6,cos370.8,g取10 m/s2)求:(1)0.5 s末物块A的速度;(2)木板B的长度。解析(1)有力F时,A、B间最大静摩擦力fAB1(mgFsin)B与地面间最大静摩擦力fB地2(2mgFsin)因为fAB2(2m)g,所以B滑动对B有:1mg22mgma2a21 m/
12、s2,a35 m/s2A以a3减速,B以a2加速,当二者共速后,因为1mg22mg,所以两者相对静止,共同减速至速度为零,设两者速度刚好相等时的速度为vvv1a3t2va2t2以上两式联立解得t20.5 s,v0.5 m/s撤去力F之前A的位移x1a1t0.75 m撤去力F之后到共速A的位移x2t20.875 mB的位移x3t20.125 m木板长lx1x2x31.5 m。答案(1)3 m/s(2)1.5 m如图所示,倾角30的足够长的光滑斜面固定在水平面上,斜面上放一长L1.8 m,质量M3 kg的薄木板,木板的最上端叠放一质量m1 kg的小物块,物块与木板间的动摩擦因数。对木板施加沿斜面向
13、上的恒力F,使木板沿斜面由静止开始向上做匀加速直线运动,假设物块与木板间的最大静摩擦力等于滑动摩擦力,取重力加速度g10 m/s2。(1)为使物块不滑离木板,求力F应满足的条件;(2)若F37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离。解析(1)若整体恰好静止,则F(Mm)gsin(31)10sin30 N20 N因要拉动木板,则F20 N若整体一起向上做匀加速直线运动,对物块和木板,由牛顿第二定律得F(Mm)gsin(Mm)a对物块有fmgsinma其中fmgcos代入数据解得F30 N向上加速的过程中为使物块不滑离木板,
14、力F应满足的条件为20 N30 N时,物块能滑离木板,由牛顿第二定律,对木板有FmgcosMgsinMa1对物块有mgcosmgsinma2设物块滑离木板所用的时间为t,由运动学公式得a1t2a2t2L代入数据解得t1.2 s物块滑离木板时的速度va2t由2gsins0v2代入数据解得s0.9 m。答案(1)20 Nv1,不计空气阻力,动摩擦因数一定,关于物块离开传送带的速率v和位置,下面哪个是可能的()A从下端B离开,vv1 B从下端B离开,vv1C从上端A离开,vv1 D从上端A离开,vv1答案ABC解析物块从A端滑上传送带,在传送带上必先相对传送带向下运动,受到向上的滑动摩擦力,若能从A
15、端离开,则向上的摩擦力大于重力沿传送带向下的分力,速度向下减速到零后以相同的加速度向上加速,由运动的对称性可知,必有vv1,即C正确,D错误;若从B端离开,当向上的摩擦力大于重力的分力时,则vv1,A正确;当摩擦力和重力的分力相等时,物块一直做匀速直线运动,vv1,故本题应选A、B、C。3. (多选)如图所示,滑块放置在厚度不计的木板上,二者处于静止状态。现对木板施加一水平向右的恒力F,已知各个接触面均粗糙,且最大静摩擦力等于滑动摩擦力。下列关于滑块和木板运动的vt图象中可能正确的是(实线、虚线分别代表木板和滑块的vt图象)()答案BD解析因恒力F大小以及各接触面大小均未知,所以滑块与木板可能
16、相对静止一起向右匀加速运动,故B正确;不可能木板运动,滑块静止,故A错误;设木板质量为M,滑块质量为m,滑块与木板间动摩擦因数为1,木板与地面间动摩擦因数为2,当M与m相对滑动时,必有木板的加速度大小大于滑块加速度大小,且木板加速度a1,当滑块从木板上掉下去之后,滑块在地面上将匀减速运动,木板加速度a2,可以看出a2a1,故D正确,C错误。4. 如图所示,一长木板在水平地面上运动,在某时刻(t0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。在物块放到木板上之后,木板运动的速度时
17、间图象可能是下列选项中的()答案A解析设在木板与物块未达到相同速度之前,木板的加速度大小为a1,物块与木板间的动摩擦因数为1,木板与地面间的动摩擦因数为2。对木板应用牛顿第二定律得1mg22mgma1,a1(122)g。设物块与木板达到相同速度之后,木板的加速度大小为a2,当二者共同减速时,对整体有22mg2ma2,a22g,此时对物块ma22mgfmax1mg。当21时,物块相对木板向右滑动,f为滑动摩擦力,对木板有22mg1mgma2,a2(221)g,可见两种情况下都有a1a2,由vt图象的斜率表示加速度可知,图象A正确。5(2019江苏高考)如图所示,质量相等的物块A和B叠放在水平地面
18、上,左边缘对齐。A与B、B与地面间的动摩擦因数均为。先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下。最大静摩擦力等于滑动摩擦力,重力加速度为g。求:(1)A被敲击后获得的初速度大小vA;(2)在左边缘再次对齐的前、后,B运动加速度的大小aB、aB;(3)B被敲击后获得的初速度大小vB。答案(1)(2)3gg(3)2解析A、B的运动过程如图所示:(1)设A、B的质量均为m,先敲击A时,由牛顿第二定律可知,A的加速度大小aAg在B上滑动时有2aALv解得:vA。(2)对齐前
19、,B所受A的摩擦力大小fAmg,方向向左,地面的摩擦力大小f地2mg,方向向左,合外力大小FfAf地3mg由牛顿第二定律FmaB,得aB3g对齐后,A、B整体所受合外力大小Ff地2mg由牛顿第二定律F2maB,得aBg。(3)设敲击B后经过时间t,A、B达到共同速度v,位移分别为xA、xB,A的加速度大小等于aA则vaAt,vvBaBtxAaAt2,xBvBtaBt2且xBxAL解得:vB2。6(2017全国卷)如图,两个滑块A和B的质量分别为mA1 kg和mB5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为10.5;木板的质量为m4 kg,与地面间的动摩擦因数为20.
20、1。某时刻A、B两滑块开始相向滑动,初速度大小均为v03 m/s。A、B相遇时,A与木板恰好相对静止。设最大静摩擦力等于滑动摩擦力,取重力加速度大小g10 m/s2。求:(1)B与木板相对静止时,木板的速度;(2)A、B开始运动时,两者之间的距离。答案(1)1 m/s(2)1.9 m解析(1)滑块A和B在木板上滑动时,木板也在地面上滑动。设A、B和木板所受的摩擦力大小分别为f1、f2和f3,A和B相对于地面的加速度大小分别为aA和aB,木板相对于地面的加速度大小为a1,在物块B与木板达到共同速度前有f11mAgf21mBgf32(mmAmB)g由牛顿第二定律得f1mAaAf2mBaBf2f1f
21、3ma1设在t1时刻,B与木板达到共同速度,其大小为v1,由运动学公式有v1v0aBt1v1a1t1联立式,代入已知数据得v11 m/s(2)在t1时间间隔内,B相对于地面移动的距离为sBv0t1aBt设在B与木板达到共同速度v1后,木板的加速度大小为a2,对于B与木板组成的体系,由牛顿第二定律有f1f3(mBm)a2由式知,aAaB;再由式知,B与木板达到共同速度时,A的速度大小也为v1,但运动方向与木板相反。由题意知,A和B相遇时,A与木板的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时间为t2,则由运动学公式,对木板有v2v1a2t2对A有v2v1aAt2在t2时间间隔内,B(以及木板)相对地面移动的距离为s1v1t2a2t在(t1t2)时间间隔内,A相对地面移动的距离为sAv0(t1t2)aA(t1t2)2 A和B相遇时,A与木板的速度也恰好相同,因此A和B开始运动时,两者之间的距离为s0sAs1sB联立以上各式,并代入数据得s01.9 m(也可用如图所示的速度时间图线求解)