收藏 分享(赏)

甘肃省庆阳市宁县第五中学高中数学必修三教案:3.3.1 几何概型.doc

上传人:高**** 文档编号:891037 上传时间:2024-05-31 格式:DOC 页数:3 大小:153.50KB
下载 相关 举报
甘肃省庆阳市宁县第五中学高中数学必修三教案:3.3.1 几何概型.doc_第1页
第1页 / 共3页
甘肃省庆阳市宁县第五中学高中数学必修三教案:3.3.1 几何概型.doc_第2页
第2页 / 共3页
甘肃省庆阳市宁县第五中学高中数学必修三教案:3.3.1 几何概型.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、课题3.3.1 几何概型授课时间4.3课型新授二次修改意见课时 1授课人张景民科目数学主备张景民教学目标知识与技能1.通过师生共同探究,体会数学知识的形成,正确理解几何概型的概念;掌握几何概型的概率公式:过程与方法2.本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯,会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型情感态度价值观3体会简单的几何概率计算,培养学生从有限向无限探究的意识.教材分析重难点教学重点:理解几何概型的定义、特点,会用公式计算几何概率.教学难点:等可能性的判断与几何概型和古典概型的区别.教学设想教法引导探究学法自学探究教具多媒体课堂设计一、

2、 目标展示复习古典概型的两个基本特点:(1)所有的基本事件只有有限个;(2)每个基本事件发生都是等可能的.那么对于有无限多个试验结果的情况相应的概率应如何求呢?为此我们学习几何概型,教师板书本节课题几何概型.二、 预习检测(1)随意抛掷一枚均匀硬币两次,求两次出现相同面的概率?(2)试验1.取一根长度为3 m的绳子,拉直后在任意位置剪断.问剪得两段的长都不小于1 m的概率有多大?试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m外射箭.假设射箭都能射中靶面内任

3、何一点都是等可能的.问射中黄心的概率为多少?(3)问题(1)(2)中的基本事件有什么特点?两事件的本质区别是什么?(4)什么是几何概型?它有什么特点?(5)如何计算几何概型的概率?有什么样的公式?(6)古典概型和几何概型有什么区别和联系?三 质疑探究例1 判断下列试验中事件A发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如下图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率.解:(1)抛掷两颗骰子,出现的可能结果有66=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B区域时有无限

4、多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概四 精讲点拨例2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.解:记“等待的时间小于10分钟”为事件A,打开收音机的时刻位于50,60时间段内则事件A发生.由几何概型的求概率公式得P(A)=(60-50)/60=1/6,即“等待报时的时间不超过10分钟”的概率为1/6.打开收音机的时刻X是随机的,可以是060之间的任何时刻,且是等可能的.我们称X

5、服从0,60上的均匀分布,X称为0,60上的均匀随机数.五 当堂测试1.已知地铁列车每10 min一班,在车站停1 min,求乘客到达站台立即乘上车的概率.解:由几何概型知,所求事件A的概率为P(A)=.2.两根相距6 m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m的概率.解:记“灯与两端距离都大于2 m”为事件A,则P(A)=.3.在500 mL的水中有一个草履虫,现从中随机取出2 mL水样放到显微镜下观察,则发现草履虫的概率是( )A.0.5 B.0.4 C.0.004 D.不能确定解析:由于取水样的随机性,所求事件A:“在取出2 mL的水样中有草履虫”的概率等于水样的体积与总体积之比=0.004.答案:C六 作业布置 课本习题3.3A组1、2、3.板书设计一 几何概型的概念 三 例题2二 例题1 四 小结教学反思

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3