1、云南省玉溪一中2020-2021学年高一数学上学期第一次月考试题(含解析)本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟.第一部分选择题(共60分)一、选择题:本大题共12小题,每小题5分,共60分.(其中第1-11小题是单项选择题,在每小题给出的四个选项中,只有一项是符合题目要求的;第12题是多选题,少选得3分,错选得0分)1. 下列因式分解错误的是( )A. B. C. D. 【答案】C【解析】【分析】根据因式分解的方法确定分解错误的选项.【详解】A选项,利用提公因式法可知,所以A选项正确.B选项,利用平方差公式可知,所以B选项正确.C选项,由于,所以C选项错误.
2、D选项,由十字相乘法可知,所以D选项正确.故选:C【点睛】本小题主要考查因式分解,属于基础题.2. 如图,观察、的变化规律,则第张图形应为( ) _A. B. C. D. 【答案】C【解析】【分析】根据逆时针旋转确定正确选项.【详解】由、可知,图形是逆时针方向旋转,所以第张图形应C.故选:C【点睛】本小题主要考查合情推理,属于基础题.3. 已知关于x的方程x2+xa=0的一个根为2,则另一个根是()A 3B. 2C. 3D. 6【答案】A【解析】【分析】设另一根为t,结合韦达定理即可求解【详解】设方程的另一个根为t,根据题意得2+t=1,解得t=3,即方程的另一个根是3故选:A【点睛】本题考查
3、一元二次方程根与系数关系,属于基础题4. 在平面直角坐标系中直线与反比例函数的图象有唯一公共点,若直线与反比例函数的图象有个公共点,则m的取值范围是( )A. B. C. D. 或【答案】D【解析】【分析】先用判别式求得,然后用判别式列不等式,解不等式求得的取值范围.【详解】由于直线与反比例函数的图象有唯一公共点,即有唯一解,消去得,.直线与反比例函数的图象有个公共点,即由两个不同的解,消去得,解得或.故选:D【点睛】本小题主要考查函数图象交点个数求参数,属于基础题.5. 已知二次函数(其中),关于这个二次函数的图像有如下说法:图像的开口一定向上;图像的顶点一定在第四象限;图像与轴的交点至少有
4、一个在轴的右侧.以上说法正确的个数为( )A. B. C. D. 【答案】C【解析】【分析】根据判断;根据判断;根据,判断;【详解】因为,所以图像的开口一定向上,故正确;因为,所以,所以图像的顶点一定在第三象限,故错误;因为开口向上,对称轴,所以图像与轴的交点至少有一个在轴的右侧,故正确;故选:C.【点睛】本题主要考查二次函数的图象和性质,还考查分析求解问题的能力,属于基础题.6. 下面给出的四类对象中,构成集合的是( )A. 某班个子较高的同学B. 大于2的整数C. 的近似值D. 长寿的人【答案】B【解析】【分析】由集合的确定性进行一一判断即可.【详解】“某班个子较高的同学”不能构成集合,因
5、为描述的对象不确定,多高才算高个子没有规定,所以不能构成集合;“大于2的整数”可以构成集合,它是一个明确的数集,集合中的元素都是大于2的整数;“的近似值”不能构成集合,因为没有明确哪些数才是的近似值,没有给出精确的程度,所以不能构成集合;“长寿的人”不能构成集合,因为年龄多大才算长寿没有一个明确的标准,所以不能构成集合.故选:B【点睛】本题主要考查了判断用自然语言描述的对象是否构成集合,关键是利用集合的确定性进行判断,属于基础题.7. 若,则A. B. 或C. D. 【答案】C【解析】【详解】由,解得所以.故选C.【点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件
6、,明确集合类型,是数集、点集还是其他的集合2求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解3在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍8. 下列五个写法:;,其中错误写法的个数为( )A. B. C. D. 【答案】C【解析】【分析】根据元素与集合、集合与集合的关系、交集等知识确定正确选项.【详解】,是集合,所以错误.,空集是任何集合的子集,所以正确.,集合是集合本身的子集,所以正确.,空集没有元素,所以错误.,是元素,是集合,所以错误.故错误的有个.故选:C【
7、点睛】本小题主要考查元素与集合、集合与集合的关系、交集等知识.9. 已知非空集合,则满足条件的集合的个数是( )A. B. C. D. 【答案】A【解析】分析】求得集合,再根据非空集合,得到,即可求解.【详解】由题意,集合,因为,可得所以满足条件的集合的个数是1个.故选:A.【点睛】本题主要考查了集合的表示方法,以及集合间的关系及应用,其中解答中正确求解集合,再结合集合间的包含关系求解是解答的关键,属于基础题.10. 已知全集,则( )A. 或B. C. D. 或【答案】D【解析】【分析】根据全集,利用补集的运算求得,然后由,利用并集的运算求解.【详解】因为全集,所以或,又,所以或,故选:D【
8、点睛】本题主要考查集合的基本运算,属于基础题.11. 已知集合中有个元素,中有个元素,全集中有个元素,.设集合有个元素,则的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】根据交集、并集、补集的知识确定正确选项.【详解】依题意集合中有个元素,中有个元素,全集中有个元素,所以至少有个元素,最多有个元素(即).所以至多有个元素,最少有个元素(即).而,所以至少有个元素,最多有个元素,所以.故选:A【点睛】本小题主要考查集合交集、并集和补集,属于基础题.12. 已知集合中至多有一个元素,则的值可以是( )A. B. C. D. 【答案】ACD【解析】【分析】对分成和两种情况进行分类
9、讨论,由此确定正确选项.【详解】当时,符合题意.当时,所以符合.故选:ACD【点睛】本小题主要考查根据一元二次方程根的个数求参数.第二部分非选择题(共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡的相应位置上.13. 解不等式组,则该不等式组的最大整数解是_.【答案】【解析】【分析】解不等式组求得的取值范围,由此求得的最大整数解.【详解】依题意,所以的最大整数解为.故答案为:【点睛】本题主要考查不等式的解法,属于基础题.14. 已知三角形的三边长为满足,则此三角形为_三角形.(填写形状)【答案】直角【解析】【分析】通过计算得到,由此判断三角形为直角三角形.【详解】
10、依题意,所以,故为直角.所以三角形是直角三角形.故答案为:直角【点睛】本小题主要考查三角形形状的判断.15. 已知集合,若,则实数的值为_ .【答案】或【解析】【分析】根据以及集合元素的互异性求得的值.【详解】依题意,当时,符合题意.当时,不满足互异性,错误.当,(舍去)或,时,符合题意.综上所述,实数的值为或.故答案为:或【点睛】本小题主要考查元素与集合,属于基础题.16. 设集合,若非空集合满足:;(其中表示集合中元素的个数,表示集合中的最小元素),则称为的一个好子集,的所有好子集的个数为_.【答案】【解析】【分析】利用列举法求得所有好子集.【详解】依题意是非空集合,且是的子集.是否好子集
11、11是21否21否21否31否31否31否41否12是22是22是32否13是23是14是综上所述,好子集有个.故答案为:【点睛】本小题主要考查集合新定义,考查子集的知识,属于基础题.三、解答题:满分70分.解答应写出文字说明、证明过程或演算步骤.17. 已知,非空集合,若,求实数的取值范围.【答案】【解析】分析】先由非空集合,得到,即,然后根据是的子集,由求解.【详解】,非空集合,所以,即,所以,因为是的子集,故,解得,故实数的取值范围是.【点睛】本题主要考查集合基本关系的应用,还考查了分析求解问题的能力,属于基础题.18. 已知集合,(1)若,求;(2)若,求实数的取值范围【答案】(1);
12、(2).【解析】分析】(1)根据并集的定义计算;(2)对分类,分两类:和,对再根据交集的定义求解【详解】解:(1)当时,因此,;(2)当时,即,;当时,则或,解得或.综上所述,实数的取值范围是.【点睛】本题考查集合的运算,掌握交集、并集的定义是解题关键在交集为空集时要注意分类讨论19. 现学校需要从名女生和名男生中随机选择校园广播员,如果选名校园广播员,请用树状图或列表法求出名校园广播员恰好是男女的概率.【答案】作图见解析;概率为.【解析】【分析】利用树状图列举出基本事件的总数,再从中找出恰好是男女的基本事件数,代入古典概型的概率公式求解.【详解】如图所示:共有种等可能的结果,名主持人恰好男女
13、的情况有种,名主持人恰好男女的概率.【点睛】本题主要考查古典概型的概率求法,属于基础题.20. 如图,圆的直径与弦相交于点,若,求圆的半径长.【答案】【解析】【分析】过点作于,连接,在中,根据,列出方程,即可求解.【详解】过点作于,连接,如图所示,因为所以在中,可得,即,解得,或(舍去),所以的半径为.故答案为:.【点睛】本题主要考查了圆的弦的性质,以及勾股定理的应用,其中解答中熟练应用圆的弦的性质,结合勾股定理,列出方程求解是解答的关键,着重考查推理与运算能力.21. 某地电话拨号上网有两种收费方式,用户可以任意选择其中一种:第一种是计时制,元/分;第二种是包月制,元/月(限一部个人住宅电话
14、上网).此外,每一种上网方式都得加收通讯费元/分.(1)若小明家一个月上网的时间为小时,用含的代数式分别表示出两种收费方式下,小明家一个月应该支付的费用;(2)若小明估计自家一个月内上网的时间为小时,你认为他家采用哪种方式较为合算?【答案】(1)采用计时制应付的费用为:元,采用包月制应付的费用为:元;(2)采用包月制合算.【解析】【分析】(1)采用计时制根据元/分和加收通讯费元/分求解; 采用包月制根据元/月和加收通讯费元/分求解. (2)由(1)建立的函数模型,将小代入求值比较即可.【详解】(1)采用计时制应付的费用为:元,采用包月制应付的费用为:元.(2)若一个月内上网的时间为小时,则计时
15、制应付的费用为(元)包月制应付的费用为(元),采用包月制合算.【点睛】本题主要考查函数模型的实际应用,还考查了建模和解模的能力,属于基础题.22. 如图,已知二次函数的图象经过、三点.(1)求该二次函数的解析式;(2)点是该二次函数图象上的一点,且满足(是坐标原点),求点的坐标;(3)点是该二次函数图象上位于一象限上的一动点,连接分别交、轴于点、,若的面积分别为、,求的最大值.【答案】(1);(2)或;(3).【解析】【分析】(1)由已知条件得到可求得答案;(2)求得直线过且,直线解析式与抛物线方程联立可得答案;(3)设,求出表达式,然后配方求最值.【详解】(1)由题意可得,解得,抛物线解析式为;(2)当点在轴上方时,过作交抛物线于点,如图,图1、关于对称轴对称,、关于对称轴对称,四边形为等腰梯形,即点满足条件,;当点在轴下方时,可设直线解析式为,把代入可求得,直线解析式为,可设直线解析式为,把代入可求得,直线解析式为,联立直线和抛物线解析式可得解得或,;综上可知满足条件的点的坐标为或;(3)设,且,当时,有有最大值,最大值为.【点睛】本题考查抛物线的图象与性质,直线与抛物线的位置关系,需要有较强的理解了、计算能力.