1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心考点精准研析考点一三角函数的定义域、值域(最值)1.函数y=的定义域为_.2.(2019全国卷)函数f(x)=sin-3cos x的最小值为_.3.函数f(x)=1-3sin的值域为_.世纪金榜导学号【解析】1.要使函数有意义,必须使sin x-cos x0.利用图象,在同一坐标系中画出0,2上y=sin x和y=cos x的图象.在0,2内,满足sin x=cos x的x为,再结合正弦、余弦函数的周期是2,所以原函数的定义域为.答案:2.f(x)=sin-3cos
2、x=-cos 2x-3cos x=-2cos2x-3cos x+1=-2+,因为-1cos x1,所以当cos x=1时,f(x)min=-4,故函数f(x)的最小值为-4.答案:-43.因为-1sin1,所以-3-3sin3,所以-21-3sin4,所以函数f(x)=1-3sin的值域为-2,4.答案:-2,41.求三角函数的定义域的实质解简单的三角不等式,常借助三角函数线或三角函数的图象求解.2.求解三角函数的值域(最值)常见三种类型(1)形如y=asin x+bcos x+c的三角函数化为y=Asin(x+)+c的形式,再求值域(最值).(2)形如y=asin2x+bsin x+c的三角
3、函数,可先设sin x=t,化为关于t的二次函数求值域(最值).(3)形如y=asin xcos x+b(sin xcos x)+c的三角函数,可先设t=sin xcos x,化为关于t的二次函数求值域(最值).秒杀绝招图象性质解T1,sin x-cos x=sin0,将x-视为一个整体,由正弦函数y=sin x的图象与性质知2kx-+2k(kZ),解得2k+x2k+(kZ).所以定义域为.特殊值法解T2,易知f(x)-4,又x=0时,f(x)=-4,所以f(x)的最小值为-4.考点二三角函数的单调性【典例】1.若f(x)=cos x-sin x在0,a上是减函数,则a的最大值是 ()A.B.
4、C.D.2.函数f(x)=sin的单调递减区间为_.世纪金榜导学号【解题导思】序号联想解题1看到“f(x)=cos x-sin x在0,a上是减函数”想到化简f(x)解析式,0,a是某个减区间的子集2看到“f(x)=sin”想到运用诱导公式转化为f(x)=-sin【解析】1.选C.f(x)=cos x-sin x=cos在上单调递减,所以0,a,故0a.2.f(x)=-sin,欲求f(x)单调递减区间,只需求y=sin的单调递增区间.由2k-2x-2k+(kZ),得k-xk+(kZ).所以f(x)的单调递减区间为(kZ).答案:(kZ)若f(x)=cos x-sin x在-a,a上是减函数,则
5、a的最大值是()A.B.C.D.【解析】选A.f(x)=cos x-sin x=cos在上单调递减,所以-a,a,故-a-且a,解得00)的形式,再求y=Asin(x+)的单调区间,只需把x+看作一个整体代入y=sin x的相应单调区间内即可.2.已知单调区间求参数的三种方法子集法求出原函数的相应单调区间,由已知区间是该区间的子集,列不等式(组)求解求补集法由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解周期性法由所给区间的两个端点到其相应对称中心的距离不超过周期列不等式(组)求解1.设函数f(x)=sin,x,则以下结论正确的是()A.函数f(
6、x)在上单调递减B.函数f(x)在上单调递增C.函数f(x)在上单调递减D.函数f(x)在上单调递增【解析】选C.由x得2x-,所以f(x)先减后增;由x得2x-,所以f(x)先增后减;由x得2x-,所以f(x)单调递减;由x得2x-,所以f(x)先减后增.2.若函数f(x)=sin x(0)在区间上单调递增,在区间上单调递减,则=_.【解析】因为f(x)=sin x(0)过原点,所以当0x,即0x时,y=sin x是增函数;当x,即x时,y=sin x是减函数.由已知=,所以=.答案:考点三三角函数的周期性、奇偶性、对称性命题精解读考什么:(1)周期性,奇偶性、对称性等.(2)考查逻辑推理,
7、数学运算等核心素养,以及转化与化归的思想.怎么考:与诱导公式、三角恒等变换结合考查求周期,参数等.新趋势:以考查与诱导公式、三角恒等变换结合为主.学霸好方法求周期的三种方法(1)利用周期函数的定义:f(x+T)=f(x).(2)利用公式:y=Asin(x+)和y=Acos(x+)的最小正周期为,y=tan(x+)的最小正周期为.(3)利用图象:图象重复的x轴上一段的长度.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是个周期.正切曲线相邻两对称中心之间的距离是半个周期.周期性【典例】1.(2019全国卷)若x1=,x2=是函数f(x)=si
8、n x(0)两个相邻的极值点,则=()世纪金榜导学号A.2B.C.1D.2.(2019北京高考)函数f(x)=sin22x的最小正周期是_.世纪金榜导学号【解析】1.选A.由于x1=,x2=是函数两个相邻的极值点,故=-=,所以T=,即=2.2.f(x)=(1-cos 4x),最小正周期T=.答案:奇偶性、对称性【典例】(2019全国卷)下列函数中,以为周期且在区间单调递增的是世纪金榜导学号()A.f(x)=|cos 2x|B.f(x)=|sin 2x|C.f(x)=cos|x|D.f(x)=sin|x|【解析】选A.分别画出函数的图象可得选项A的周期为,选项B的周期为,而选项C的周期为2,选
9、项D不是周期函数.结合图象的升降情况可得A正确.1.函数y=sin 2x+cos 2x的最小正周期为()A.B.C.D.2【解析】选C.y=sin 2x+cos 2x=2sin,T=.2.同时具有:最小正周期为;图象关于点对称的一个函数是 ()A.y=cosB.y=sinC.y=sinD.y=tan【解析】选D.由T=,排除C;把x=代入A,B,函数值均不为零,排除A,B;再验证D符合题意.3.(2018江苏高考)已知函数y=sin(2x+)的图象关于直线x=对称,则的值是_.【解析】正弦函数的对称轴为+k(kZ),故把x=代入得+=+k(kZ),=-+k(kZ),因为-,所以k=0,=-.答
10、案:-1.已知函数f(x)=sin(sin x)+cos(sin x),xR,则下列说法正确的是 ()A.函数f(x)是周期函数且最小正周期为B.函数f(x)是奇函数C.函数f(x)在区间上的值域为1,D.函数f(x)在区间上是增函数【解析】选C.对于A,f(x+)=sinsin(x+)+cossin(x+)=sin(-sin x)+cos(-sin x)=-sin(sin x)+cos(sin x)f(x),A错误;对于B,f(-x)=sinsin(-x)+cossin(-x)=-sin(sin x)+cos(sin x)-f(x),B错误;对于C,令t=sin x,则t0,1,y=sin t+cos t=sin1,C正确;对于D,f(x)=sin,令t=sin x+,则t=sin x+在上单调递增,t,但外层函数y=sin t在上并不具有单调性,所以D错误.2.(2020嘉兴模拟)已知函数f(x)=(1+cos 2x)sin2x(xR),则f(x)的最小正周期为_;当x时,f(x)的最小值为_.【解析】因为f(x)=(1+cos 2x)sin2x=(1+cos 2x)=-=-cos 4x,所以f(x)的最小正周期为T=;因为x,所以4x0,所以cos 4x-1,1,因此,f(x)=-cos4x.即f(x)的最小值为0.答案:0关闭Word文档返回原板块