收藏 分享(赏)

2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc

上传人:高**** 文档编号:882183 上传时间:2024-05-31 格式:DOC 页数:30 大小:794.50KB
下载 相关 举报
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第1页
第1页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第2页
第2页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第3页
第3页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第4页
第4页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第5页
第5页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第6页
第6页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第7页
第7页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第8页
第8页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第9页
第9页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第10页
第10页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第11页
第11页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第12页
第12页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第13页
第13页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第14页
第14页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第15页
第15页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第16页
第16页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第17页
第17页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第18页
第18页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第19页
第19页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第20页
第20页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第21页
第21页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第22页
第22页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第23页
第23页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第24页
第24页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第25页
第25页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第26页
第26页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第27页
第27页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第28页
第28页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第29页
第29页 / 共30页
2017届物理一轮教学案:专题十五考点一 碰撞与动量守恒 WORD版含解析.doc_第30页
第30页 / 共30页
亲,该文档总共30页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专题十五动量守恒与近代物理初步(选修35) 考纲展示命题探究基础点知识点1动量、冲量、动量定理、动量守恒定律1动量(1)定义:运动物体的质量与速度的乘积。(2)表达式:pmv。(3)单位:kgm/s。(4)标矢性:动量是矢量,其方向与速度的方向相同。(5)动量、动能、动量变化量的比较。名称项目动量动能动量变化量定义物体的质量和速度的乘积物体由于运动而具有的能量物体末动量与初动量的矢量差定义式pmvEkmv2ppp项目动量动能动量变化量标矢性矢量标量矢量特点状态量状态量过程量关联方程Ek,Ekpv,p,p2.冲量(1)定义:力和力的作用时间的乘积叫做力的冲量。(2)表达式:IFt。单位:Ns。(

2、3)标矢性:冲量是矢量,它的方向由力的方向决定。3动量定理项目动量定理内容物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量表达式ppF合t或mvmvF合t意义合外力的冲量是引起物体动量变化的原因标矢性矢量式(注意正方向的选取)4.动量守恒定律(1)内容:如果一个系统不受外力,或者所受合外力为0,这个系统的总动量保持不变。(2)表达式m1v1m2v2m1v1m2v2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。p1p2,相互作用的两个物体动量的增量等大反向。p0,系统总动量的增量为零。(3)适用条件系统不受外力或所受外力的合力为零,不是系统内每个物体所受的合外力都

3、为零,更不能认为系统处于平衡状态。近似适用条件:系统内各物体间相互作用的内力远大于它所受到的外力。如果系统在某一方向上所受外力的合力为零,则系统在该方向上动量守恒。 知识点2碰撞、反冲和爆炸问题1碰撞:物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。2特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒。3分类两类守恒碰撞类型动量是否守恒机械能是否守恒弹性碰撞守恒守恒非弹性碰撞守恒有损失完全非弹性碰撞守恒损失最大4.反冲现象(1)在某些情况下,原来系统内物体具有相同的速度,发生相互作用后各部分的末速度不再相同而分开。这类问题相互作用的过程中系统的动能增大,且常

4、伴有其他形式能向动能的转化。(2)反冲运动的过程中,如果合外力为零或外力的作用远小于物体间的相互作用力,可利用动量守恒定律来处理。5爆炸问题:爆炸与碰撞类似,物体间的相互作用力很大,且远大于系统所受的外力,所以系统动量守恒,爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动。知识点 3实验:验证动量守恒定律1方案一:利用气垫导轨完成一维碰撞实验(如图所示)。(1)测质量:用天平测出滑块质量。(2)安装:正确安装好气垫导轨。(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度。(改变滑块的质量。改变滑块的初速度大小和方向。)(4)验证:一维碰撞中

5、的动量守恒。2方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(如图所示)。(1)测质量:用天平测出两小球的质量m1、m2。(2)安装:把两个等大小球用等长悬线悬挂起来。(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰。(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度。(5)改变条件:改变碰撞条件,重复实验。(6)验证:一维碰撞中的动量守恒。3方案三:在光滑桌面上两车碰撞完成一维碰撞实验(如图所示)。(1)测质量:用天平测出两小车的质量。(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车

6、的后面,在两小车的碰撞端分别装上撞针和橡皮泥。(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动。(4)测速度:通过纸带上两计数点间的距离及时间由v算出速度。(5)改变条件:改变碰撞条件,重复实验。(6)验证:一维碰撞中的动量守恒。重难点一、动量定理的理解和应用1动量定理的理解(1)动量定理描述的是一个过程,它表明物体所受合外力的冲量是物体动量变化的原因,物体动量的变化是它受到的外力作用经过一段时间积累的结果。(2)动量定理Ftmvtmv0是一个矢量式,运算应遵循平行四边形定则。若公式中各量均在一条直线上,可规定某一方向为正,根据题设给出各量的方

7、向研究它们的正负,从而把矢量运算简化为代数运算。(3)动量定理既适用于恒力,也适用于变力,对于变力的情况,动量定理中的F应理解为变力在作用时间内的平均值。(4)动量定理说明的是合力的冲量与动量变化量的关系,反映力对时间的积累效果,与物体的初、末动量无必然联系,动量变化量的方向与合力的冲量方向相同。而物体在某一时刻的动量方向跟合力的冲量方向无必然联系。(5)动量定理的研究对象是单个物体或物体系统。系统的动量变化等于在作用过程中组成系统的各个物体所受外力冲量的矢量和。而物体之间的作用力不会改变系统的总动量。2动量定理的应用(1)动力学问题中的应用在不涉及加速度和位移的情况下,研究运动和力的关系时,

8、用动量定理求解一般较为方便。因为动量定理不仅适用于恒力作用,也适用于变力作用,而且也不需要考虑运动过程的细节。(2)用动量定理解释现象用动量定理解释的现象一般可分为两类:一类是物体的动量变化量一定,这种情况下力的作用时间越短,力就越大;力的作用时间越长,力就越小。另一类是作用力一定,这种情况下力的作用时间越长,动量变化量越大;力的作用时间越短,动量变化量越小。分析问题时,要把哪个量一定、哪个量变化搞清楚。用动量定理解释现象时,关键分析清楚作用力、时间及动量变化量的情况。3应用动量定理解题的步骤(1)明确研究对象和研究过程研究对象可以是一个物体,也可以是几个物体组成的系统,系统内各物体可以是保持

9、相对静止的,也可以是相对运动的。研究过程既可以是全过程,也可以是全过程中的某一阶段。(2)进行受力分析只分析研究对象以外的物体施加给研究对象的力,所有外力之和为合外力。研究对象内部的相互作用力(内力)会改变系统内某一物体的动量,但不影响系统的总动量,因此不必分析内力。如果在所选定的研究过程的不同阶段中物体的受力情况不同,则要分别计算它们的冲量,然后求它们的矢量和。(3)规定正方向由于力、冲量、速度、动量都是矢量,在一维的情况下,列式前可以先规定一个正方向,与规定的正方向相同的矢量为正,反之为负。(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和)。(5)根据动量定理

10、列式求解。特别提醒(1)若各力的作用时间相同,且各外力为恒力,可以先求合力,再乘以时间求冲量,I合F合t。(2)若各外力作用时间不同,可以先求出每个外力在相应时间的冲量,然后求各外力冲量的矢量和,即I合F1t1F2t2(3)初态的动量p是系统各部分动量之和,末态的动量p也是系统各部分动量之和。(4)对系统各部分的动量进行描述时,应该选取同一个参考系,不然求和无实际意义。二、动量守恒定律的理解与应用1动量守恒定律的“五性”矢量性动量守恒定律的表达式为矢量方程,解题应选取统一的正方向相对性各物体的速度必须是相对同一参考系的速度(一般是相对于地面)同时性动量是一个瞬时量,表达式中的p1、p2必须是系

11、统中各物体在相互作用前同一时刻的动量,p1、p2必须是系统中各物体在相互作用后同一时刻的动量系统性研究的对象是相互作用的两个或多个物体组成的系统普适性动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统2.动量守恒定律适用条件(1)前提条件:存在相互作用的物体系。(2)理想条件:系统不受外力。(3)实际条件:系统所受合外力为0。(4)近似条件:系统内各物体间相互作用的内力远大于系统所受的外力。(5)方向条件:系统在某一方向上满足上面的条件,则此方向上动量守恒。3动量守恒定律与机械能守恒定律的比较定律名称比较项目动量守恒定律 机械能守恒定律相同点研究对象相互作用

12、的物体组成的系统研究过程某一运动过程不同点守恒条件系统不受外力或所受外力的矢量和为零系统只有重力或弹力做功表达式p1p2p1p2Ek1Ep1Ek2Ep2表达式的矢标性矢量式标量式某一方向上应用情况可在某一方向上独立使用不能在某一方向独立使用运算法则矢量运算代数运算4.应用动量守恒定律的解题步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上是否守恒);(3)规定正方向,确定初末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明。特别提醒(1)动量守恒定律是自然界中最普遍、最基本的规律之一。

13、它不仅适用于宏观、低速领域,而且适用于微观、高速领域。(2)在同一物理过程中,系统的动量是否守恒与系统的选取密切相关,因此应用动量守恒解决问题时,一定要明确哪些物体组成的系统在哪个过程中动量是守恒的。(3)速度v与参考系的选取有关,因此相互作用的物体的速度v1、v2、v1、v2都必须相对同一惯性参考系,通常都是指相对地面的速度。(4)动量是状态量,具有瞬时性,动量守恒指的是在任意两个确定状态下系统的动量矢量和相同,因此动量守恒定律的表达式中v1、v2必须是相互作用前同一时刻两物体的瞬时速度,v1、v2必须是相互作用后同一时刻两物体的瞬时速度。(5)对于两个以上的物体组成的系统,由于物体较多,作

14、用过程较为复杂,往往要根据作用过程中的不同阶段,建立多个动量守恒方程,或将系统内的物体按相互作用的关系分成几个小系统,分别建立动量守恒方程。三、碰撞、反冲、爆炸类问题1碰撞(1)对碰撞的理解发生碰撞的物体间一般作用力很大,作用时间很短;各物体作用前后各自动量变化显著;物体在作用时间内位移可忽略。即使碰撞过程中系统所受合外力不等于零,由于内力远大于外力,作用时间又很短,故外力的作用可忽略,认为系统的动量是守恒的。若碰撞过程中没有其他形式的能转化为机械能,则系统碰撞后的总机械能不可能大于碰撞前系统的总机械能。(2)物体的碰撞是否为弹性碰撞的判断弹性碰撞是碰撞过程中无机械能损失的碰撞,遵循的规律是动

15、量守恒定律和机械能守恒定律。确切地说是碰撞前后系统动量守恒,动能不变。题目中明确告诉物体间的碰撞是弹性碰撞。题目中明确告诉是弹性小球、光滑钢球或分子(原子等微观粒子)碰撞的,都是弹性碰撞。(3)弹性碰撞的规律规律:满足动量守恒和机械能守恒。例如:以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1m1v1m2v2m1vm1v12m2v22由得v1,v2结论:a当m1m2时,v10,v2v1,碰撞后交换了速度。b当m1m2时,v10,v20,碰撞后都向前运动。当m1m2时,即第一个物体的质量比第二个物体的质量大得多时,m1m2m1,m1m2m1,由两式得v1v1

16、,v22v1。c当m1m2时,v10,v20,碰撞后质量小的球反弹。当m1m2时,即第一个物体的质量比第二个物体的质量小得多时,m1m2m2,m1m2m2,0,由两式得v1v1,v20。(4)非弹性碰撞的规律规律:满足动量守恒和能量守恒(而机械能不守恒)。例如:以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面非弹性碰撞为例,由动量守恒定律知m1v1m1v1m2v2,由能量守恒定律知,系统损失的机械能E损m1v。(5)碰撞现象满足的三个规律动量守恒:即p1p2p1p2。动能不增加:即Ek1Ek2Ek1Ek2或。速度要合理a若碰前两物体同向运动,则应有v后v前,碰后原来在前的物体速度一

17、定增大,若碰后两物体同向运动,则应有v前v后。b碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。2反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动的现象。(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:动量守恒;动量近似守恒;某一方向上动量守恒。反冲运动中机械能往往不守恒。(3)实例:喷气式飞机、火箭等都是利用反冲运动的实例。3爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,发生爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒。(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动

18、能,所以爆炸前后系统的总动能增加。(3)位置不变:爆炸的时间极短,因而在作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动。特别提醒(1)弹性碰撞能够完全恢复形变,非弹性碰撞是不能够完全恢复形变,完全非弹性碰撞是碰后粘在一起。(2)反冲运动中平均动量守恒。四、实验:验证动量守恒定律1实验时应注意的几个问题(1)前提条件:碰撞的两物体应保证“水平”和“正碰”。(2)四种方案提醒若利用气垫导轨进行实验,调整气垫导轨时,注意利用水平仪确保导轨水平。若利用摆球进行实验,两小球静放时球心应在同一水平线上,且刚好接触,摆线竖直,将小球拉起后,两条摆线应在同一

19、竖直平面内。若利用长木板进行实验,可在长木板下垫一小木片用以平衡摩擦力。若利用斜槽进行实验,入射球质量要大于被碰球质量,即:m1m2,防止碰后m1被反弹。(3)探究结论:寻找的不变量必须在各种碰撞情况下都不改变。2对实验误差的分析(1)系统误差:主要来源于装置本身是否符合要求,即:碰撞是否为一维碰撞。实验是否满足动量守恒的条件,如气垫导轨是否水平,两球是否等大,长木板实验是否平衡掉摩擦力等。(2)偶然误差:主要来源于质量m和速度v的测量。(3)减小误差的措施设计方案时应保证碰撞为一维碰撞,且尽量满足动量守恒的条件。采取多次测量求平均值的方法减小偶然误差。1思维辨析(1)动量具有瞬时性。()(2

20、)物体动量的变化等于某个力的冲量。()(3)动量守恒定律中的速度是相对于同一参考系的速度。 ()(4)质量相等的两个物体发生碰撞时,一定交换速度。()(5)系统的总动量不变是指系统总动量的大小保持不变。()(6)两物体的动量相等,动能也一定相等。()(7)物体的动能发生变化,动量也一定发生变化。()(8)只要系统内存在摩擦力,系统的动量就不可能守恒。()(9)只要系统中有一个物体具有加速度,系统的动量就不守恒。()(10)利用斜槽做“验证动量守恒定律”实验时,入射小球每次开始滚下的位置是固定的。()答案(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)2(多选)两个质量不同的物体,

21、如果它们的()A动能相等,则质量大的动量大B动能相等,则动量大小也相等C动量大小相等,则质量大的动能小D动量变化量相等,则受到合力的冲量大小也相等答案ACD解析由p可知,两物体动能相同时,质量越大的动量越大,A正确,B错误;由Ek可知,两物体动量相同时,质量越大的动能越小,C正确;由动量定理可知,物体动量变化量与所受合外力的冲量相同,D正确。3两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为mA2.0 kg,mB0.90 kg,它们的下底面光滑,上表面粗糙,另有一质量mC0.10 kg的滑块C,以vC10 m/s的速度恰好水平地滑到A的上表面,如图所示。由于摩擦,滑块最后停在木

22、块B上,B和C的共同速度为0.50 m/s。求:(1)木块A的最终速度vA;(2)滑块C离开A时的速度vC。答案(1)0.25 m/s(2)2.75 m/s解析C从开始滑上A到恰好滑上A的右端过程中,A、B、C组成系统动量守恒mCvC(mBmA)vAmCvCC刚滑上B到两者相对静止,对B、C组成的系统动量守恒mBvAmCvC(mBmC)v解得vA0.25 m/svC2.75 m/s。考法综述本考点内容在高考中必考,动量守恒定律是本考点的重点,动量与能量结合问题是本考点的难点,高考命题一般考查动量与能量相结合的问题,因此复习本考点时应掌握:1个定理动量定理2个概念动量、冲量1个定律动量守恒定律1

23、个应用动量守恒定律与能量守恒定律的综合应用3类问题碰撞、反冲、爆炸类问题命题法1动量定理的相关问题典例1在撑竿跳比赛的横杆下方要放上很厚的海绵垫子,为什么?设一位撑竿跳运动员的质量为70 kg,越过横杆后从h5.6 m高处落下,落在海绵垫上和落在普通沙坑里分别经历时间t11 s、t20.1 s停下。求两种情况下海绵垫和沙坑对运动员的作用力。答案落在海绵垫上时,FN1442 N;落在沙坑里时,FN8120 N解析运动员从接触海绵垫或沙坑,直到停止,两种情况下运动员的动量变化量相同,即从动量pmvm,变化到p0。在这个过程中,运动员除受到竖直向下的重力外,还受到海绵垫或沙坑的支持力。通过比较两种情

24、况下发生动量变化的时间,即可比较两者的作用力大小。若规定竖直向上为正方向,则运动员着地(接触海绵或沙坑)过程中的始、末动量为pmvm,p0受到的合外力为FFNmg由牛顿第二定律的动量表达公式Ftppmvmv即FNmg所以:FNmg落在海绵垫上时,t11 s,则FN N1442 N落在沙坑里时,t20.1 s,则FN N8120 N放上海绵垫后,运动员发生同样动量变化量的时间延长了,同时又增大了运动员与地面(海绵垫)的接触面积,可以有效地保护运动员不致受到猛烈撞击受伤。【解题法】用动量定理解题的基本思路命题法2动量守恒定律的简单应用典例2如图所示,光滑水平轨道上放置长木板A(上表面粗糙)和滑块C

25、,滑块B置于A的左端,三者质量分别为mA2 kg、mB1 kg、mC2 kg。开始时C静止,A、B一起以v05 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞。求A与C发生碰撞后瞬间A的速度大小。答案2 m/s解析因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为vA,C的速度为vC,以向右为正方向,由动量守恒定律得mAv0mAvAmCvCA与B在摩擦力作用下达到共同速度,设共同速度为vAB,由动量守恒定律得mAvAmBv0(mAmB)vABA与B达到共同速度后恰好不再与C碰撞,应满足vABvC,

26、联立以上各式,代入数据得vA2 m/s。【解题法】动量守恒定律的解题步骤命题法3碰撞类问题典例3如图,光滑水平直轨道上有三个质量均为m的物块A、B、C。B的左侧固定一轻弹簧(弹簧左侧的挡板质量不计)。设A以速度v0朝B运动,压缩弹簧。当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动。假设B和C碰撞过程时间极短。求从A开始压缩弹簧直至与弹簧分离的过程中,(1)整个系统损失的机械能;(2)弹簧被压缩到最短时的弹性势能。答案(1)(2)mv解析(1)从A压缩弹簧到A与B具有共同速度v1时,对A、B和弹簧组成的系统,根据动量守恒定律得mv02mv1得v1。根据机械能守恒定律得此时弹性势能为

27、Epmv(2m)vmv。当B与C碰撞时,由于作用时间极短,弹簧来不及发生形变,所以势能也保持不变。B与C碰撞前后瞬间,B、C组成的系统动量守恒,设碰后B、C共同速度为v2。根据动量守恒定律得mv12mv2由得v2。B、C碰撞之后,A、B、C组成的系统机械能守恒。整个过程中损失的能量为Emv。(2)弹簧最短时A、B、C具有共同速度v3。根据动量守恒定律得mv12mv23mv3,得v3。B与C碰后,A、B、C组成的系统机械能守恒,设弹簧最短时势能为Ep。Ep(3m)vmv。【解题法】碰撞问题解题策略(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解。(2)可熟记一些公式,例如“一动一静

28、”模型中,两物体发生弹性正碰后的速度满足:v1v0、v2v0。(3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度;当m1m2,且v200时,碰后质量大的速率不变,质量小的速率为2v0;当m1m2,且v200时,碰后质量小的球原速率反弹。命题法4爆炸、反冲及人船模型类问题典例4如图所示,长为l、质量为M的小船停在静水中,一个质量为m的人站在船头,若不计水的阻力,当人从船头走到船尾的过程中,船和人对地面的位移分别是多少?答案ll解析选人和船组成的系统为研究对象,由于人从船头走到船尾的过程中,系统在水平方向上不受外力作用,所以水平方向动量守恒。人起步前系统的总动量为零,当人起步

29、加速前进时,船同时加速运动;当人匀速前进时,船同时匀速运动;当人停下来时,船也停下来。设某一时刻人对地的速度为v2,船对地的速度为v1,选人前进的方向为正方向,根据动量守恒定律有:mv2Mv10,即。因为在人从船头走到船尾的整个过程中,每一时刻系统都满足动量守恒定律,所以每一时刻人的速度与船的速度之比都与它们的质量成反比。从而可以做出判断:在人从船头走向船尾的过程中,人的位移x2与船的位移x1之比也等于它们的质量的反比,即。由图可以看出x1x2l,所以x1l,x2l。【解题法】利用人船模型解题需注意两点(1)条件系统的总动量守恒或某一方向上的动量守恒。构成系统的两物体原来静止,因相互作用而反向

30、运动。x1、x2均为沿动量方向相对于同一参考系的位移。(2)解题关键是画出初、末位置,确定各物体位移关系。命题法5动量、能量相结合的综合问题典例5如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m。P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L。物体P置于P1的最右端,质量为2m且可看作质点。P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2黏连在一起,P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内)。P与P2之间的动摩擦因数为。求:(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2;(2)此过程中弹簧的最大压缩量x和相应的弹性势能

31、Ep。答案(1)v0(2)L解析(1)对P1、P2碰撞瞬间由动量守恒定律得mv02mv1对P、P1、P2碰撞全过程由动量守恒定律得3mv04mv2解得v1,v2v0(2)当P、P2速度相等时弹簧压缩最短,此时vv2对P1、P2刚碰完到弹簧压缩到最短过程,应用能量守恒定律得(2m)v(2m)v(4m)v22mg(xL)Ep对P1、P2刚碰完到P停在A点,由能量守恒定律得(2m)v(2m)v(4m)v2mg2(xL)联立以上各式,解得xL,Ep。【解题法】利用动量和能量观点解题的技巧(1)若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(弹性碰撞的情况下,可以应用机械能守恒定律)。(

32、2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理。(3)因为动量守恒定律、能量守恒定律、机械能守恒定律、动能定理都只考查一个物理过程始末两状态的有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处。特别对于变力做功问题,更显示出它们的优越性。命题法6动量与其他知识相结合的综合问题典例6图甲所示的装置中,小物块A、B质量均为m,水平面上PQ段长为l,与物块间的动摩擦因数为,其余段光滑。初始时刻,挡板上的轻质弹簧处于原长;长为r的连杆位于图中虚线位置;A紧靠滑杆(A、B间距大于2r)。随后,连杆以角速度匀速转动,带动滑杆做水平运动,滑杆的速度时间图象如图乙所示。A在滑杆

33、推动下运动,并在脱离滑杆后与静止的B发生完全非弹性碰撞。(1)求A脱离滑杆时的速度v0,及A与B碰撞过程的机械能损失E。(2)如果AB不能与弹簧相碰,设AB从P点到运动停止所用的时间为t1,求取值范围,及t1与的关系式。(3)如果AB能与弹簧相碰,但不能返回到P点左侧,设每次压缩弹簧过程中弹簧的最大弹性势能为Ep,求的取值范围,及Ep与的关系式(弹簧始终在弹性限度内)。答案(1)rm2r2(2)0t1(3)Epm2r22mgl解析(1)由图乙可知当滑杆的速度最大且向外运动时小物块A与滑杆分离,此时小物块的速度为v0r。小物块A与B碰撞,由于水平面光滑则A、B系统动量守恒,由动量守恒定律和能量守

34、恒定律得mv02mv,Emv2mv2,解得Em2r2。(2)AB进入PQ段做匀减速运动,由牛顿第二定律有(2m)g(2m)a。AB做减速运动的时间为t1,解得t1。欲使AB不能与弹簧相碰,则滑块在PQ段的位移有xl,而x,解得0。(3)若AB能与弹簧相碰,则1。若AB压缩弹簧后恰能返回到P点,由动能定理得(2m)g(2l)02mv2,解得2。即的取值范围是。从AB滑上PQ到弹簧具有最大弹性势能的过程,由能量守恒定律得Ep2mv2(2m)gl,解得Epm2r22mgl。【解题法】动量守恒与其他知识综合问题的求解方法(1)动量守恒与其他知识综合问题往往是多过程问题。解决这类问题首先要弄清物理过程。

35、(2)其次弄清每一个物理过程遵从什么样的物理规律。(3)最后根据物理规律对每一个过程列方程求解,找出各物理过程之间的联系是解决问题的关键。1高空作业须系安全带。如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动)。此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为()A.mgB.mgC.mg D.mg答案A解析人做自由落体运动时,有v,选向下为正方向,又mgtFt0mv,得Fmg,所以A项正确。2如图,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0

36、,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()AA和B都向左运动BA和B都向右运动CA静止,B向右运动DA向左运动,B向右运动答案D解析选向右的方向为正方向,根据动量守恒定律得:2mv02mv0mvA2mvB0,选项A、B、C都不满足此式,只有选项D满足此式,所以D项正确。3如图所示,甲木块的质量为m1,以v的速度沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧。甲木块与弹簧接触后()A甲木块的动量守恒B乙木块的动量守恒C甲、乙两木块所组成系统的动量守恒D甲、乙两木块所组成系统的机械能守恒答案C解析甲木块与弹簧接触

37、后,甲木块或乙木块所受的合力均不为零,动量不守恒,A、B两项错误;甲、乙两木块组成的系统受到的合力为零,系统的动量守恒,C项正确;甲、乙两木块及弹簧组成的系统机械能守恒,故两木块组成的系统机械能不守恒,D项错误。4一弹丸在飞行到距离地面5 m高时仅有水平速度v2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为31。不计质量损失,取重力加速度g10 m/s2,则下列图中两块弹片飞行的轨迹可能正确的是()答案B解析弹丸爆炸过程遵守动量守恒,若爆炸后甲、乙同向飞出,则有mvmv甲mv乙;若爆炸后甲、乙反向飞出,则有mvmv甲mv乙;或2mmv甲mv乙;爆炸后甲、乙从同一高度做平抛运动,由选项A

38、中图可知,爆炸后甲、乙向相反方向飞出,下落时间t s1 s,速度分别为v甲 m/s2.5 m/s,v乙 m/s0.5 m/s,代入式不成立,A项错误;同理,可求出选项B、C、D中甲、乙的速度,分别代入式、式、式可知,只有B项正确。5如图,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间。A的质量为m,B、C的质量都为M,三者均处于静止状态。现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞。设物体间的碰撞都是弹性的。答案(2)MmM,第一次碰撞后,A与C速度同向,且A的速度小于C的速度,不可能与B发生碰撞;如果mM,第一次碰撞后,A停止

39、,C以A碰前的速度向右运动,A不可能与B发生碰撞;所以只需考虑mM的情况。第一次碰撞后,A反向运动与B发生碰撞。设与B发生碰撞后,A的速度为vA2,B的速度为vB1,同样有vA2vA12v0根据题意,要求A只与B、C各发生一次碰撞,应有vA2vC1联立式得m24mMM20解得m(2)M另一个解m(2)M舍去。所以,m和M应满足的条件为(2)MmM6两滑块a、b沿水平面上同一条直线运动,并发生碰撞;碰撞后两者粘在一起运动;经过一段时间后,从光滑路段进入粗糙路段。两者的位置x随时间t变化的图象如图所示。求:(1)滑块a、b的质量之比;(2)整个运动过程中,两滑块克服摩擦力做的功与因碰撞而损失的机械

40、能之比。答案(1)m1m218(2)WE12解析(1)设a、b的质量分别为m1、m2,a、b碰撞前的速度分别为v1、v2。由题给图象得v12 m/sv21 m/sa、b发生完全非弹性碰撞,碰撞后两滑块的共同速度为v。由题给图象得v m/s由动量守恒定律得m1v1m2v2(m1m2)v联立式得m1m218(2)由能量守恒得,两滑块因碰撞而损失的机械能为Em1vm2v(m1m2)v2由图象可知,两滑块最后停止运动。由动能定理得,两滑块克服摩擦力所做的功为W(m1m2)v2联立式,并代入题给数据得WE127一质量为0.5 kg的小物块放在水平地面上的A点,距离A点5 m的位置B处是一面墙,如图所示。

41、物块以v09 m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7 m/s,碰后以6 m/s的速度反向运动直至静止。g取10 m/s2。(1)求物块与地面间的动摩擦因数;(2)若碰撞时间为0.05 s,求碰撞过程中墙面对物块平均作用力的大小F;(3)求物块在反向运动过程中克服摩擦力所做的功W。答案(1)0.32(2)F130 N(3)W9 J解析(1)由动能定理,有mgsmv2mv可得0.32(2)由动量定理,有Ftmvmv可得F130 N(3)Wmv29 J8如图,三个质量相同的滑块A、B、C,间隔相等地静置于同一水平直轨道上。现给滑块A向右的初速度v0,一段时间后A与B发生碰撞,碰后A、B分别以v0、v0的速度向右运动,B再与C发生碰撞,碰后B、C粘在一起向右运动。滑块A、B与轨道间的动摩擦因数为同一恒定值。两次碰撞时间均极短。求B、C碰后瞬间共同速度的大小。答案vv0解析设滑块质量为m,A与B碰撞前A的速度为vA,由题意知,碰后A的速度vAv0,B的速度vBv0,由动量守恒定律得mvAmvAmvB设碰撞前A克服轨道阻力所做的功为WA,由功能关系得WAmvmv设B与C碰撞前B的速度为vB,B克服轨道阻力所做的功为WB,由功能关系得WBmvmvB2据题意可知WAWB设B、C碰后瞬间共同速度的大小为v,由动量守恒定律得mvB2mv联立式,代入数据得vv0

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3