1、专练31数列求和命题范围:数列求和常用的方法基础强化一、选择题1若数列an的通项公式为an2n2n1,则数列an的前n项和为()A2nn21B2n1n21C2n1n22 D2nn222020山东临沂高三测试等差数列an的公差为2,若a2,a4,a8成等比数列,则an的前n项和Sn()An(n1) Bn(n1)C. D.32020河南平顶山高三测试数列1,的前n项和为()A. B.C. D.4数列的前2 018项的和为()A.1 B.1C.1 D.15已知数列an满足an1(1)n1an2,则其前100项和为()A250 B200C150 D1006已知数列an满足:an1anan1(n2,nN
2、*),a11,a22,Sn为数列an的前n项和,则S2018()A3 B2C1 D07若数列an的通项公式为an2n1,令bn,则数列bn的前n项和Tn为()A. B.C. D.82020资阳一中高三测试已知数列an中,a1a21,an2则数列an的前20项和为()A1 121 B1 122C1 123 D1 1249设函数f(x)log2,定义Snfff,其中,nN*,n2,则Sn等于()A. B.log2(n1)C. D.log2(n1)二、填空题10设Sn为等差数列an的前n项和,已知a1a3a116,则S9_.11设数列an满足a11,且an1ann1(nN*),则数列的前10项的和为
3、_122020全国卷数列an满足an2(1)nan3n1,前16项和为540,则a1_.能力提升13数列1,12,1222,122223,12222n1,的前n项和为()A2n1 Bn2nnC2n1n D2n1n214已知数列an满足2a122a22nann(nN*),数列的前n项和为Sn,则S1S2S3S10()A. B.C. D.15设Sn是数列an的前n项和,且a11,an1SnSn1,则Sn_.162020湖南郴州高三测试已知数列an的前n项和为Sn,且满足Sn2an1(nN*),则数列nan的前n项和Tn为_专练31数列求和1CSn(2222n)(1352n1)2n12n22Aa2,
4、a4,a8成等比,aa2a8,(a13d)2(a1d)(a17d),得a1d2,Snna1dn(n1)3B2,Sn224D,S2 018115D当n2k1时,a2ka2k12,an的前100项和S100(a1a2)(a3a4)(a99a100)502100,故选D.6Aan1anan1,a11,a22,a31,a41,a52,a61,a71,a82,故数列an是周期为6的周期数列,且每连续6项的和为0,故S20183360a2017a2018a1a23.故选A.7B因为a1a2ann(n2),所以bn,故Tn,故选B.8C由题意可知,数列a2n是首项为1,公比为2的等比数列,数列a2n1是首项
5、为1,公差为2的等差数列,故数列an的前20项和为10121 123.选C.9Cf(x)f(1x)1log2log21,又Snfff,Snfff,2Snn1,Sn.1018解析:设等差数列an的公差为d.a1a3a116,3a112d6,即a14d2,a52,S918.11.解析:an1ann1,当n2时,a2a12,a3a23,a4a34,anan1n,ana1,an1(n2)又当n1时a11符合上式,an2,S1022.127解析:令n2k(kN*),则有a2k2a2k6k1(kN*),a2a45,a6a817,a10a1229,a14a1641,前16项的所有偶数项和S偶51729419
6、2,前16项的所有奇数项和S奇54092448,令n2k1(kN*),则有a2k1a2k16k4(kN*),a2k1a1(a3a1)(a5a3)(a7a5)(a2k1a2k1)28146k4k(3k1)(kN*),a2k1k(3k1)a1(kN*),a32a1,a510a1,a724a1,a944a1,a1170a1,a13102a1,a15140a1,S奇a1a3a158a12102444701021408a1392448.a17.13D由题意,得an12222n12n1,Sn(211)(221)(231)(2n1)(2222n)nn2n1n2.14C2a122a22nann(nN*),2a122a22n1an1n1(n2),2nan1(n2),当n1时也满足,故an,故,Sn11,S1S2S3S10,选C.15解析:an1SnSn1Sn1Sn,1,数列为等差数列,(n1)(1)n.Sn.16(n1)2n1解析:Sn2an1(nN*),n1时,a12a11,解得a11;n2时,anSnSn12an1(2an11),an2an1,数列an是首项为1,公比为2的等比数列,an2n1.nann2n1.则数列nan的前n项和Tn122322n2n1.2Tn2222(n1)2n1n2n,Tn12222n1n2nn2n(1n)2n1,Tn(n1)2n1.