1、八年级数学上册第十四章整式的乘法与因式分解必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式由左到右的变形中,属于分解因式的是()Aa(mn)amanBa2b2c2(ab)(ab)c2C1
2、0x25x5x(2x1)Dx2168x(x4)(x4)8x2、下列运算结果正确的是()Aa2+a4a6Ba2a3a6C(a2)3a6Da8a2a63、已知4x2-2(k+1)x+1是一个完全平方式,则k的值为()A2B2C1D1或-34、已知m2n2nm2,则的值是()A1B0C1D5、计算(a+3)(a+1)的结果是()Aa22a+3Ba2+4a+3Ca2+4a3Da22a36、化简(a2)2a(5a)的结果是()Aa4B3a4C5a4Da247、已知a、b、c为ABC的三边,且满足a2c2b2c2a4b4,则ABC是()A直角三角形B等腰三角形C等腰三角形或直角三角形D等腰直角三角形8、把
3、多项式分解因式正确的是()ABCD9、如果xm2,xn,那么xm+n的值为()A2B8C D210、当x=-1时,代数式2ax33bx+8的值为18,那么,代数式9b6a+2=()A28B28C32D32第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、对于实数a,b,定义运算“”如下:ab=a2ab,例如,53=5253=10若(x+1)(x2)=6,则x的值为_2、(1)_;(2)_;(3)_;(4)_;(5)_;(6)_3、计算:的结果是_.4、定义为二阶行列式,规定它的运算法则为=adbc.则二阶行列式的值为_.5、阅读下面材料:一个含有多个字母的式子中,如果任意
4、交换两个字母的位置,式子的值都不变,这样的式子就叫做对称式例如:a+b+c,abc,a2+b2,含有两个字母a,b的对称式的基本对称式是a+b和ab,像a2+b2,(a+2)(b+2)等对称式都可以用a+b,ab表示,例如:a2+b2(a+b)22ab请根据以上材料解决下列问题:(1)式子a2b2a2b2中,属于对称式的是_(填序号);(2)已知(x+a)(x+b)x2+mx+n若,求对称式的值;若n4,直接写出对称式的最小值三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:(2x3y)2(2x+y)(2xy)+5y(x2y),其中x,y满足+|y+3|02、计算:(a+1)(
5、a3)(a2)23、因式分解:(1);(2);(3)4、利用我们学过的完全平方公式与不等式知识能解决方程或代数式的一些问题,阅读下列两则材料:材料一:已知m2-2mn+2n2-8n+16=0,求m、n的值解:m2-2mn+2n2-8n+16=0,(m2-2mn+n2)+(n2-8n+16)=0,(m-n)2+(n-4)2=0,(m-n)20,(n-4)20(m-n)2=0,(n-4)2=0m=n=4材料二:探索代数式x2+4x+2与-x2+2x+3是否存在最大值或最小值?x2+4x+2=(x2+4x+4)-2=(x+2)2-2,(x+2)20,x2+4x+2=(x+2)2-2-2代数式x2+4
6、x+2有最小值-2;-x2+2x+3=-(x2-2x+1)+4=-(x-1)2+4,-(x-1)20,-x2+2x+3=-(x-1)2+44代数式-x2+2x+3有最大值4学习方法并完成下列问题:(1)代数式x2-6x+3的最小值为_;(2)如图,在紧靠围墙的空地上,利用围墙及一段长为100米的木栅栏围成一个长方形花圃,为了设计一个尽可能大的花圃,设长方形垂直于围墙的一边长度为x米,则花圃的最大面积是多少?(3)已知ABC的三条边的长度分别为a,b,c,且a2+b2+74=10a+14b,且c为正整数,求ABC周长的最小值5、化简:(x3)2x2x+x3(x)2(x2)-参考答案-一、单选题1
7、、C【解析】【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案【详解】A、是整式的乘法,故此选项不符合题意;B、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;C、把一个多项式化为几个整式的积的形式,故此选项符合题意;D、没把一个多项式化为几个整式的积的形式,故此选项不符合题意;故选:C【考点】本题考查因式分解,熟练掌握因式分解的定义及其特征是解答的关键2、D【解析】【分析】根据整式的运算直接进行排除选项即可【详解】解:A、a2+a4,无法合并,故此选项错误;B、a2a3a5,故此选项错误;C、(a2)3a6,故此选项错误;D、a8a2a6,正确;故选:D【考点】本题
8、主要考查整式的运算,熟练掌握整式的运算是解题的关键3、D【解析】【分析】利用完全平方公式的结构特征判断即可确定出k的值【详解】解:4x2-2(k+1)x+1是关于x的完全平方式,2(k+1)=4,解得:k=1或k=-3,故选:D【考点】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键4、C【解析】【详解】分析:首先进行移项,然后转化为两个完全平方式,根据非负数的性质求出m和n的值,然后代入所求的代数式得出答案详解:,解得:m=2,n=2,故选C点睛:本题主要考查的是非负数的性质以及代数式的求值,属于中等难度的题型将代数式转化为两个完全平方式是解决这个问题的关键5、A【解析】【分析】运用
9、多项式乘多项式法则,直接计算即可【详解】解:(a+3)(a+1)a23a+a+3a22a+3故选:A【考点】本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加6、A【解析】【分析】先根据完全平方公式和单项式乘多项式法则计算,再合并同类项即可求解.【详解】a(5a)=a+4.故选A.【考点】本题考查整式的混合运算,完全平方公式,关键是掌握完全平方公式.7、C【解析】【分析】移项并分解因式,然后解方程求出a、b、c的关系,再确定出ABC的形状即可得解【详解】解:移项得,a2c2b2c2a4+b4
10、=0,c2(a2b2)(a2+b2)(a2b2)=0,(a2b2)(c2a2b2)=0,所以,a2b2=0或c2a2b2=0,即a=b或a2+b2=c2,因此,ABC等腰三角形或直角三角形故选:C【考点】本题考查了因式分解的应用以及勾股定理的逆定理的应用,提取公因式并利用平方差公式分解因式得到a、b、c的关系式是解题的关键8、B【解析】【详解】利用公式法分解因式的要点,根据平方差公式:,分解因式为:.故选B.9、C【解析】【分析】根据同底数幂的乘法进行运算即可【详解】解:如果xm2,xn,那么xm+nxmxn2故选:C【考点】本题考查了同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法公式10
11、、C【解析】【分析】首先根据当x1时,代数式2ax3-3bx+8的值为18,求出-2a+3b的值为10再把9b-6a+2改为3(-2a+3b)+2,最后将-2a+3b的值代入3(-2a+3b)+2中即可【详解】解:当x=-1时,代数式2ax3-3bx+8的值为18,-2a+3b+8=18,-2a+3b=10,则9b-6a+2,=3(-2a+3b)+2,=310+2,=32,故选:C【考点】此题主要考查代数式求值,掌握整体代入的思想是解答本题的关键二、填空题1、1【解析】【分析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+1)2(x+1)(x2)=6,整
12、理得,3x+3=6,解得,x=1,故答案为1【考点】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键2、 或 或64; 【解析】【分析】(1)根据幂的乘方计算即可;(2)根据幂的乘方计算即可;(3)根据幂的乘方计算化为底数是3,也可按幂的乘方逆运算化为底数为27即可;(4)根据幂的乘方计算,再算负数的偶次幂即可;(5)根据幂的乘方计算,再算负数的偶次幂即可;(6)根据积的乘方,再算幂的乘方计算即可【详解】解:(1);(2);(3);(4);(5);(6)故答案为(1);(2);(3)或;(4)或64;(5);(6)【考点】本题考查积的乘方与幂的乘方,掌
13、握积的乘方与幂的乘方法则是解题关键3、【解析】【分析】逆用积的乘方运算法则以及平方差公式即可求得答案.【详解】=(5-4)2018=+2,故答案为+2.【考点】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.4、1【解析】【详解】由题意可得:=.故答案为1.5、(1);(2)6;的最小值为【解析】【分析】(1)根据对称式的定义进行判断;(2)先得到a+b2,ab,再变形得到,然后利用整体代入的方法计算;根据分式的性质变形得到,再利用完全平方公式变形得到(a+b)22ab+,所以原式=m2+,然后根据非负数的性质可确定的最小值【详解】解:(1)式子a2b2a2b2中,属
14、于对称式的是 故答案为;(2)x2+(a+b)x+abx2+mx+na+bm,abna+b2,ab,6;(a+b)22ab+m2+8+m2+,m20,的最小值为【考点】本题主要考查完全平方公式,关键是根据题目所给的定义及完全平方公式进行求解即可三、解答题1、7xy,【解析】【分析】首先利用完全平方公式及平方差公式对原式进行去括号,并合并同类项进行化简,之后利用算数平方根及绝对值的非负性进行求解x、y,代入化简结果即可【详解】解:原式4x212xy+9y2(4x2y2)+5xy10y24x212xy+9y24x2+y2+5xy10y27xy,+|y+3|0,x0,y+30,x,y3,原式7(3)
15、【考点】本题考查的是利用整式乘法进行化简,同时利用非负性进行求解,熟练掌握公式法是解本题的关键2、【解析】【分析】先计算乘法,再合并同类项,即可求解【详解】解:(a+1)(a3)(a2)2 【考点】本题主要考查了整式的混合运算,熟练掌握整式的混合运算法则是解题的关键3、(1);(2);(3)【解析】【分析】(1)先变号,再运用提公因式法分解计算;(2)直接运用提公因式法分解计算即可;(3)先变号,再运用提公因式法分解计算【详解】解:(1);(2);(3)【考点】本题考查提公因式法分解因式,正确找出题中的公因式是解题的关键4、 (1)6(2)1250平方米(3)15【解析】【分析】(1)仿照材料
16、二中的方法即可完成;(2)由题意可得到面积的代数式,仿照材料二中的方法可完成解答;(3)由材料一的方法可求得a与b的值,再根据c为正整数,即可求得三角形周长的最小值(1)x2-6x+3=(x2-6x+9)-6=(x-3)2-6(x+2)20x2-6x+3=(x-3)26-6代数式x2+4x+2有最小值-6故答案为:-6(2)由题意,长方形平行于围墙的一边长度为(100-2x)米花圃的最大面积为:平方米,且所以花圃的最大面积为1250平方米(3)a2+b2+74=10a+14b(a2-10a+25)+(b2-14b+49)=0即,即a5=0,b7=0a=5,b=7根据三角形三边的不等关系,7-5c7+5即2c12c为正整数c=3,4,5,6,7,8,9,10,11这几个数ABC的周长为a+b+c=12+c当c=3时,ABC的周长最小,且最小值为12+3=15【考点】本题是材料阅读题,考查了完全平方公式的应用,读懂材料中提供的方法并能灵活运用是解题的关键5、x3x7【解析】【分析】直接利用整式运算法则计算得出答案【详解】(x3)2x2x+x3(x)2(x2)=x6x2x-x3x2x2=x6-2-1-x3+2+2= x3x7【考点】本题主要考查整式的混合运算,正确运用整式运算法则是解答题目的关键.