收藏 分享(赏)

人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx

上传人:a**** 文档编号:877380 上传时间:2025-12-17 格式:DOCX 页数:24 大小:903.17KB
下载 相关 举报
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第1页
第1页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第2页
第2页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第3页
第3页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第4页
第4页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第5页
第5页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第6页
第6页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第7页
第7页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第8页
第8页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第9页
第9页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第10页
第10页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第11页
第11页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第12页
第12页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第13页
第13页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第14页
第14页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第15页
第15页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第16页
第16页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第17页
第17页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第18页
第18页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第19页
第19页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第20页
第20页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第21页
第21页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第22页
第22页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第23页
第23页 / 共24页
人教版八年级数学上册第十二章全等三角形定向测评试题(含详细解析).docx_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、八年级数学上册第十二章全等三角形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知图中的两个三角形全等,则的度数是()A72B60C58D502、如图,B,C,E,F四点在一条直线上,下列

2、条件能判定ABC与DEF全等的是()AABDE,A=D,BE=CFBABDE,AB=DE,AC=DFCABDE,AC=DF,BE=CFDABDE,ACDF,A=D3、如图,在ABC和BDE中,点C在边BD上,边AC交边BE于点F若ACBD,ABED,BCBE,则ACB等于()AEDBBBEDCAFBD2ABF4、如图,在ABC和DEF中,ABDE,ABDE,运用“SAS”判定ABCDEF,需补充的条件是()AACDFBADCBECFDACBDFE5、作平分线的作图过程如下:作法:(1)在和上分别截取、,使(2)分别以,为圆心,大于的长为半径作弧,两弧交于点(3)作射线,则就是的平分线用下面的三

3、角形全等的判定解释作图原理,最为恰当的是()ABCD6、如图,RtACB中,ACB90,ABC的角平分线AD、BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB135;BFBA;PHPD;连接CP,CP平分ACB,其中正确的是()ABCD7、如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()ABC10D88、如图,在和中,则下列结论中错误的是()ABCDE为BC中点9、如图,在中,点E在BC的延长线上,的平分线BD与的平分线CD相交于点D,连接AD,则下列结论中,正确的是ABCD10、如图,在中,

4、的平分线交于点D,DE/AB,交于点E,于点F,则下列结论错误的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,将沿轴向右平移后得到,点A的坐标为,点A的对应点在直线上,点在的角平分线上,若四边形的面积为4,则点的坐标为_2、如图所示的网格是正方形网格,点A,B,C,D均落在格点上,则BAD+ADC=_3、在ABC中,AB=4,AC=3,AD是ABC的角平分线,则ABD与ACD的面积之比是_4、如图,MNPQ,ABPQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,ADBC7,ADEB,DEEC,则AB_5、如图,ABBC

5、于B,DCBC于C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP_时,形成的RtABP与RtPCD全等三、解答题(5小题,每小题10分,共计50分)1、已知:RtABC中,B90,D是BC上一点,DFBC交AC于点H,且DFBC,FGAC交BC于点E求证:ABDE2、如图,点E在BC上,且,(1)求证:;(2)判断AC和BD的位置关系,并说明理由3、如图,在ABC中,ACB90,用直尺和圆规在斜边AB上作一点P,使得点P到点B的距离与点P到边AC的距离相等(保留作图痕迹,不写作法)4、如图,已知:正方形,点,分别是,上的点,连接,且,求证:5、如图,在中,点在边上,使,过点作,分

6、别交于点,交的延长线于点求证:-参考答案-一、单选题1、D【解析】【分析】根据是a、c边的夹角,50的角是a、c边的夹角,然后根据两个三角形全等写出即可【详解】解:是a、c边的夹角,50的角是a、c边的夹角,又两个三角形全等,的度数是50故选:D【考点】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键全等三角形的对应角相等,对应边相等对应边的对角是对应角,对应角的对边是对应边2、A【解析】【分析】根据全等三角形的判定条件逐一判断即可【详解】解:A、,即在和中,故A符合题意;B、,再由,不可以利用SSA证明两个三角形全等,故B不符合题意;C、,再由,不可以利用SSA证明两个三

7、角形全等,故C不符合题意;D、,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;故选A【考点】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键3、C【解析】【分析】根据全等三角形的判定与性质可得,再根据三角形外角的性质即可求得答案【详解】解:在和中,是的外角,故选:C【考点】本题考查了全等三角形的判定与性质以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解决本题的关键4、C【解析】【分析】证出ABCDEF,由SAS即可得出结论【详解】解:补充BECF,理由如下:ABDE,ABCDEF,若要利用SAS判定,B、D选项不符合要求,若A:AC=DF,构成的是SSA

8、,不能证明三角形全等,A选项不符合要求,C选项:BE=CF,BECF,BCEF,在ABC和DEF中,ABCDEF(SAS),故选:C【考点】此题主要考查全等三角形的判定,解题的关键是熟知“SAS”的判定的特点5、A【解析】【分析】根据作图过程可得OD=OE,CE=CD,根据OC为公共边,利用SSS即可证明OCEOCD,即可得答案【详解】分别以,为圆心,大于的长为半径作弧,两弧交于点;CE=CD,在OCE和OCD中,OCEOCD(SSS),故选:A【考点】本题考查全等三角形的判定,正确找出相等的线段并熟练掌握全等三角形的判定定理是解题关键6、D【解析】【分析】根据三角形内角和定理以及角平分线定义

9、判断;根据全等三角形的判定和性质判断;根据角平分线的判定与性质判断【详解】解:在ABC中,ACB=90,BAC+ABC=90,又AD、BE分别平分BAC、ABC,BAD+ABE=(BAC+ABC)=(180-ACB)=(180-90)=45,APB=135,故正确BPD=45,又PFAD,FPB=90+45=135,APB=FPB,又ABP=FBP,BP=BP,ABPFBP(ASA),BAP=BFP,AB=FB,PA=PF,故正确在APH和FPD中,APH=FPD=90,PAH=BAP=BFP,PA=PF,APHFPD(ASA),PH=PD,故正确连接CP,如下图所示:ABC的角平分线AD、B

10、E相交于点P,点P到AB、AC的距离相等,点P到AB、BC的距离相等,点P到BC、AC的距离相等,点P在ACB的平分线上,CP平分ACB,故正确,综上所述,均正确,故选:D【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理掌握相关性质是解题的关键7、A【解析】【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明AOFCOE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可【详解】解:如图,连结AE,设AC交EF于O,依题意,有AOOC,AOFCOE,OAFOCE,所以,OAFOCE(AS

11、A),所以,ECAF5,因为EF为线段AC的中垂线,所以,EAEC5,又BE3,由勾股定理,得:AB4,所以,AC【考点】本题考查了全等三角形的判定、勾股定理,熟练掌握是解题的关键.8、D【解析】【分析】首先证明,推出,由,推出,推出,即可一一判断【详解】解:,和为直角三角形,在和中, , , , 故A、B、C正确,故选:D【考点】本题主要考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质9、B【解析】【分析】由ABC=50,ACB=60,可判断出ACAB,根据三角形内角和定理可求出BAC的度数,根据邻补角定义可求出ACE度数,由BD平分ABC,CD平分ACE,根据角平分线

12、的定义以及三角形外角的性质可求得BDC的度数,继而根据三角形内角和定理可求得DOC的度数,据此对各选项进行判断即可得.【详解】ABC=50,ACB=60,BAC=180-ABC-ACB=70,ACE=180-ACB=120,ACAB,BD平分ABC,CD平分ACE,DBC=ABC=25,DCE=ACD=ACE=60,BDC=DCE-DBC=35,DOC=180-OCD-ODC=180-60-35=85,DBC=25,BDC=35,BCCD,故选B.【考点】本题考查了三角形内角和定理,等腰三角形判定,角平分线的定义等,熟练掌握角平分线的定义以及三角形内角和定理是解本题的关键.10、A【解析】【分

13、析】根据角平分线的性质得到CD=DF=3,故B正确;根据平行线的性质及角平分线得到AE=DE=5,故C正确;由此判断D正确;再证明BDFDEC,求出BF=CD=3,故A错误【详解】解:在中,的平分线交于点D,CD=DF=3,故B正确;DE=5,CE=4,DE/AB,ADE=DAF,CAD=BAD,CAD=ADE,AE=DE=5,故C正确;AC=AE+CE=9,故D正确;B=CDE,BFD=C=90,CD=DF,BDFDEC,BF=CD=3,故A错误;故选:A【考点】此题考查了角平分线的性质定理,平行线的性质,等边对等角证明角相等,全等三角形的判定及性质,熟记各知识点并综合应用是解题的关键二、填

14、空题1、【解析】【分析】先求出点坐标,由此可知平移的距离,根据四边形的面积为4,可求出点坐标和平移的方向、距离,则可求B点坐标【详解】解:沿轴向右平移后得到,点与点是纵坐标相同,是4,把代入中,得到,点坐标为(4,4),点是沿轴向右平移4个单位,过点作,点在的角平分线上,且,四边形的面积为4,点坐标为(1,3),根据平移的性质可知点B也是向右平移4个单位得到点(1,3),B(5,3)故答案为:(5,3)【考点】本题主要考查了一次函数图象上点的坐标特征、平移性质,通过求平移后的坐标得到平移的距离是解决本题的的关键2、或度【解析】【分析】证明DCEABD(SAS),得CDE=DAB,根据同角的余角

15、相等和三角形的内角和可得结论【详解】解:如图,设AB与CD相交于点F,在DCE和ABD中,DCEABD(SAS),CDE=DAB,CDE+ADC=ADC+DAB=90,AFD=90,BAC+ACD=90,故答案为:90度【考点】本题网格型问题,考查了三角形全等的性质和判定及直角三角形各角的关系,本题构建全等三角形是关键3、4:3【解析】【分析】根据角平分线的性质,可得出ABD的边AB上的高与ACD的AC上的高相等,估计三角形的面积公式,即可得出ABD与ACD的面积之比等于对应边之比【详解】AD是ABC的角平分线,设ABD的边AB上的高与ACD的AC上的高分别为h1,h2,h1=h2,ABD与A

16、CD的面积之比=AB:AC=4:3,故答案为4:34、7【解析】【详解】由MNPQ,ABPQ,可知DAE=EBC=90,可判定ADEBCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7故答案为:7.点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单5、2【解析】【分析】当BP=2时,RtABPRtPCD,由BC=8可得CP=6,进而可得AB=CP,BP=CD,再结合ABBC、DCBC可得B=C=90,可利用SAS判定ABPPCD【详解】当BP=2时,RtABPRtPCD理由如下:BC=8,BP=2,PC=6,AB=PCABBC,DCBC,B=C=90在A

17、BP和PCD中,ABPPCD(SAS)故答案为:2【考点】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角相等时,角必须是两边的夹角三、解答题1、见解析【解析】【分析】根据DFBC,FGAC,可得,由对顶角相等可得,进而根据等角的余角相等可得,再利用ASA证明,即可得证【详解】证明: DFBC,FGAC,又在与中(ASA) ABDE【考点】本题考查了三角形全等的性质与判定,等角的余角相等,掌握全等三角形的性质与判定是解题的关键2、 (1)见解析

18、(2),理由见解析【解析】【分析】(1)运用SSS证明即可;(2)由(1)得,根据内错角相等,两直线平行可得结论(1)在和中,(SSS);(2)AC和BD的位置关系是,理由如下:,【考点】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解答本题的关键3、详见解析【解析】【分析】先作ABC的角平分线BD,再过点D作AC的垂线交AB于P,则利用PDBC得到PDBCBD,于是可证明PDBCBD,所以PBPD【详解】解:如图,点P为所作【考点】此题主要考查尺规作图,解题的关键是熟知角平分线的作法与平行线的性质.4、见解析【解析】【分析】将ABE绕点A逆时针旋转90得到ADG,根据旋转的性质可得GD=BE,AG=AE,DAG=BAE,然后求出FAG=EAF,再利用“边角边”证明AEF和AGF全等,根据全等三角形对应边相等可得EF=FG,即可得出结论【详解】如解图,将绕点逆时针旋转至的位置,使与重合,在和中,【考点】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,难点在于利用旋转变换作出全等三角形5、详见解析【解析】【分析】根据得出,再根据,故,证明即可证明.【详解】,在和中,(AAS),【考点】本题考查了直角三角形两锐角互余以及三角形全等的判定和性质,熟练掌握直角三角形两锐角互余以及三角形全等的判定和性质是解题的关键.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1