1、人教版八年级数学上册第十三章轴对称章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,点是边上任意一点,过点作交于点,则的度数是()ABCD2、如图,等边的顶点,规定把等边“先沿轴翻折,再
2、向左平移1个单位”为一次变换,这样连续经过2021次变换后,顶点C的坐标为()ABCD3、小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A3个B4个C5个D无数个4、如图,RtACB中,ACB90,ABC的角平分线AD、BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB135;BFBA;PHPD;连接CP,CP平分ACB,其中正确的是()ABCD5、在平面直角坐标系中,点
3、关于轴对称的点的坐标为()ABCD6、2020年初,新冠状病毒引发肺炎疫情,全国多家医院纷纷派医护人员驰援武汉下面是四家医院标志得图案,其中是轴对称图形得是()ABCD7、如图,若,则下列结论中不一定成立的是()ABCD8、下列图形中,是轴对称图形的是()ABCD9、如图,直线,等边三角形的顶点、分别在直线和上,边与直线所夹的锐角为,则的度数为()ABCD10、如图,D是等边的边AC上的一点,E是等边外一点,若,则对的形状最准确的是()A等腰三角形B直角三角形C等边三角形D不等边三角形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BD垂直平分线段AC,AEBC,
4、垂足为E,交BD于P点,AE7cm,AP4cm,则P点到直线AB的距离是_2、在44的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有_种3、如图,在和中,以点为顶点作,两边分别交,于点,连接,则的周长为_4、如图,在ABC中,AB=BC,ABC=110,AB的垂直平分线DE交AC于点D,连接BD,则ABD=_5、在平面直角坐标系中,点关于直线的对称点的坐标是_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC中,ABC=40, ACB=90,AE平分BAC交BC于点EP是边BC上的动点(不与B,C
5、重合),连结AP,将APC沿AP翻折得APD,连结DC,记BCD=(1)如图,当P与E重合时,求的度数(2)当P与E不重合时,记BAD=,探究与的数量关系2、如图所示的四个图形中,从几何图形变换的角度考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由3、如图,在ABC中,ABAC,D是BC边上的中点,连结AD,BE平分ABC交AC于点E,过点E作EFBC交AB于点F(1)若C36,求BAD的度数(2)求证:FBFE4、已知点和试根据下列条件求出a,b的值(1)A,B两点关于y轴对称;(2)A,B两点关于x轴对称;(3)ABx轴5、如图1,在中,A=120,C=20,BD平分ABC交AC
6、于点D(1)求证:BD=CD(2)如图2,若BAC的角平分线AE交BC于点E,求证:AB+BE=AC(3)如图3,若BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论-参考答案-一、单选题1、B【解析】【分析】根据等腰三角形的性质可得B=C,进而可根据三角形的内角和定理求出A的度数,然后根据平行线的性质可得DEC=A,进一步即可求出结果【详解】解:,B=C=65,A=180BC=50,DFAB,DEC=A=50,FEC=130故选:B【考点】本题考查了等腰三角形的性质、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上
7、述基础知识是解题的关键2、D【解析】【分析】先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标【详解】ABC是等边三角形AB=3-1=2点C到x轴的距离为1+,横坐标为2C(2,)由题意可得:第1次变换后点C的坐标变为(2-1,),即(1,),第2次变换后点C的坐标变为(2-2,),即(0,)第3次变换后点C的坐标变为(2-3,),即(-1,)第n次变换后点C的坐标变为(2-n,)(n为奇数)或(2-n,)(n为偶数),连续
8、经过2021次变换后,等边的顶点的坐标为(-2019,),故选:D【考点】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键3、C【解析】【分析】结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45,右下45方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45、向右下45平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【考点】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形
9、的结构特征是解本题的关键.4、D【解析】【分析】根据三角形内角和定理以及角平分线定义判断;根据全等三角形的判定和性质判断;根据角平分线的判定与性质判断【详解】解:在ABC中,ACB=90,BAC+ABC=90,又AD、BE分别平分BAC、ABC,BAD+ABE=(BAC+ABC)=(180-ACB)=(180-90)=45,APB=135,故正确BPD=45,又PFAD,FPB=90+45=135,APB=FPB,又ABP=FBP,BP=BP,ABPFBP(ASA),BAP=BFP,AB=FB,PA=PF,故正确在APH和FPD中,APH=FPD=90,PAH=BAP=BFP,PA=PF,AP
10、HFPD(ASA),PH=PD,故正确连接CP,如下图所示:ABC的角平分线AD、BE相交于点P,点P到AB、AC的距离相等,点P到AB、BC的距离相等,点P到BC、AC的距离相等,点P在ACB的平分线上,CP平分ACB,故正确,综上所述,均正确,故选:D【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理掌握相关性质是解题的关键5、D【解析】【分析】利用关于x轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可【详解】点关于轴对称的点的坐标为(3,-2),故选:D【考点】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键
11、6、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形【详解】解:选项B能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是做轴对称图形;选项A、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是做轴对称图形;故选:B【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合7、A【解析】【分析】根据翻三角形全等的性质一一判断即可【详解】解:ABCADE,AD=AB,AE=AC,BC=DE,ABC=ADE,BAD
12、=CAE,AD=AB,ABD=ADB,BAD=180-ABD-ADB,CDE=180-ADB-ADE,ABD=ADE,BAD=CDE故B、C、D选项不符合题意,故选:A【考点】本题考了三角形全等的性质,解题的关键是三角形全等的性质8、C【解析】【分析】依据轴对称图形的定义逐项分析即可得出C选项正确【详解】解:因为选项A、B、D中的图形都不能通过沿某条直线折叠直线两旁的部分能达到完全重合,所以它们不符合轴对称图形的定义和要求,因此选项A、B、D中的图形都不是轴对称图形,而C选项中的图形沿上下边中点的连线折叠后,折痕的左右两边能完全重合,因此符合轴对称图形的定义和要求,因此C选项中的图形是轴对称图
13、形,故选:C【考点】本题主要考查了轴对称图形的定义,学生需要掌握轴对称图形的定义内容,理解轴对称图形的特征,方能解决问题找对图形,同时也考查了学生对图形的感知力和空间想象的能力9、C【解析】【分析】根据,可以得到,再根据等边三角形可以计算出的度数【详解】解:如图所示:根据,又是等边三角形故选:C【考点】本题主要考查了平行线的性质,即两直线平行内错角相等以及两直线平行同位角相等;明确平行线的性质是解题的关键10、C【解析】【分析】先根据已知利用SAS判定ABDACE得出ADAE,BADCAE60,从而推出ADE是等边三角形【详解】解:三角形ABC为等边三角形,ABAC,BDCE,12,在ABD和
14、ACE中,ABDACE(SAS),ADAE,BADCAE60,ADE是等边三角形故选:C【考点】本题考查了等边三角形的判定和全等三角形的判定方法,掌握等边三角形的判定和全等三角形的判定是本题的关键,做题时要对这些知识点灵活运用二、填空题1、3cm【解析】【分析】由已知条件,根据垂直平分线的性质得出ABBC,可得到ABDDBC,再利用角平分线上的点到角两边的距离相等得到答案【详解】解:过点P作PMAB与点M,BD垂直平分线段AC,ABCB,ABDDBC,即BD为角平分线,AE7cm,AP4cm,AEAP3cm,又PMAB,PECB,PMPE3(cm)故答案为:3cm【考点】本题综合考查了线段垂直
15、平分线的性质及角平分线的性质,线段垂直平分线上的点到线段两端的距离相等,角平分线上的点到角两边的距离相等,灵活应用线段垂直平分线及角平分线的性质是解题的关键.2、13【解析】【分析】根据轴对称图形的性质,分别移动一个正方形,即可得出符合要求的答案【详解】如图所示:故一共有13画法.3、4【解析】【分析】延长AC至E,使CE=BM,连接DE证明BDMCDE(SAS),得出MD=ED,MDB=EDC,证明MDNEDN(SAS),得出MN=EN=CN+CE,进而得出答案【详解】延长AC至E,使CE=BM,连接DEBD=CD,且BDC=140,DBC=DCB=20,A=40,AB=AC=2,ABC=A
16、CB=70,MBD=ABC+DBC=90,同理可得NCD=90,ECD=NCD=MBD=90,在BDM和CDE中, BDMCDE(SAS),MD=ED,MDB=EDC,MDE=BDC=140,MDN=70,EDN=70=MDN,在MDN和EDN中,MDNEDN(SAS),MN=EN=CN+CE,AMN的周长=AM+MN+AN=AM+CN+CE+AN=AM+AN+CN+BM=AB+AC=4;故答案为:4【考点】本题考查了全等三角形的判定与性质、等腰三角形的性质等知识;构造辅助线证明三角形全等是解题的关键4、35【解析】【详解】在ABC中,AB=BC,ABC=110, A=C=35, AB的垂直平
17、分线DE交AC于点D, AD=BD, ABD=A=35;故答案是355、故答案为: 【考点】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质,属于基础题型,熟练掌握它们的性质和运用是解答的关键100【解析】【分析】先求出点到直线的距离,再根据对称性求出对称点到直线的距离,从而得到点的横坐标,即可得解【详解】点,点到直线的距离为,点关于直线的对称点到直线的距离为3,点的横坐标为,对称点的坐标为.故答案为【考点】本题考查了坐标与图形变化对称,根据轴对称性求出对称点到直线的距离,从而得到横坐标是解题的关键,作出图形更形象直观三、解答题1、 (1)25(2)当点P在线段BE上时,250
18、;当点P在线段CE上时,250【解析】【分析】(1)由B40,ACB90,得BAC50,根据AE平分BAC,P与E重合,可得ACD,从而ACBACD;(2)分两种情况:当点P在线段BE上时,可得ADCACD90,根据ADCBADBBCD,即可得250;当点P在线段CE上时,延长AD交BC于点F,由ADCACD90,ADCAFCABCBAD+可得9040,即250(1)解:B40,ACB90,BAC50,AE平分BAC,EACBAC25,P与E重合,D在AB边上,AECD,ACD65,ACBACD25;(2)如图1,当点P在线段BE上时,ADCACD90,ADCBADBBCD,9040,250;
19、如图2,当点P在线段CE上时,延长AD交BC于点F,ADCACD90,ADCAFCABCBAD+40,9040,250【考点】本题考查三角形综合应用,涉及轴对称变换,三角形外角等于不相邻的两个内角的和的应用,解题的关键是掌握轴对称的性质,能熟练运用三角形外角的性质2、图(2),仅它不是轴对称图形【解析】【详解】试题分析:观察图形发现(1)(3)(4)都是轴对称图形,而(2)不是轴对称图形,由此即可得出结论试题解析:解:(1)(3)(4)都是轴对称图形,而(2)不是轴对称图形故从几何图形变换的角度考虑,图(2)与其它三个不同3、(1)54,(2)见解析【解析】【分析】(1)利用等腰三角形的三线合
20、一的性质证明ADB90,再利用等腰三角形的性质求出ABC即可解决问题(2)利用角平分线性质和平行线性质证明FBEFEB即可【详解】解:(1)ABAC,CABC,C36,ABC36,D为BC的中点,ADBC,BAD90ABC903654(2)BE平分ABC,ABEEBC,又EFBC,EBCBEF,EBFFEB,BFEF【考点】本题考查等腰三角形的性质,平行线的性质等知识,解题的关键是熟练掌握等腰三角形的性质和判定,熟练运用平行线进行角的推导和证明4、(1),;(2),;(3),【解析】【分析】(1)关于y轴对称,纵坐标不变,横坐标变为相反数,据此可得a,b的值;(2)关于x轴对称,横坐标不变,纵
21、坐标变为相反数,据此可得a,b的值;(3)ABx轴,即两点的纵坐标相同,横坐标不相同,据此可得a,b的值.【详解】解:(1)因为A,B两点关于y轴对称,所以,则,;(2)因为A,B两点关于x轴对称,所以则,;(3)因为x轴则满足,即,即【考点】本题考查了关于x轴的对称点的坐标特点以及关于y轴的对称点的坐标特点,即点P(x,y)关于x轴对称点P的坐标是(x,-y),关于y轴对称点P的坐标是(-x,y).5、 (1)见解析(2)见解析(3)不成立,正确的结论是BE-AB=AC,见解析【解析】【分析】(1)根据三角形内角和可得,利用角平分线得出,由等角对等边即可证明;(2)过点E作交AC于点F,根据
22、平行线的性质可得,由等量代换、外角的性质及等角对等边可得,依据全等三角形的判定和性质可得,结合图形,由线段间的数量关系进行等量代换即可证明;(3)(2)中的结论不成立,正确的结论是过点A作交BE于点F,由平行线的性质及等量代换可得,根据等角对等边得出,由角平分线可得,结合图形根据各角之间的数量关系得出,由等角对等边可得,结合图形进行线段间的等量代换即可得出结果(1)证明:,BD平分,;(2)证明:如图:过点E作交AC于点F,AE是的平分线,在和中,;(3)解:(2)中的结论不成立,正确的结论是理由如下:如图,过点A作交BE于点F,AE是的外角平分线,【考点】题目主要考查等腰三角形的判定和性质,全等三角形的判定和性质,利用角平分线进行角度的计算,平行线的性质,三角形内角和定理等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键