1、人教版八年级数学上册第十三章轴对称同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果一个等腰三角形的周长为17cm,一边长为5cm,那么腰长为()A5cmB6cmC7cmD5cm或6cm2、如图
2、,在和中,连接交于点,连接下列结论:;平分;平分其中正确的个数为()A4B3C2D13、如图,已知钝角ABC,依下列步骤尺规作图,并保留作图痕迹步骤1以C为圆心,CA为半径画弧;步骤2以B为圆心,BA为半径画弧,交弧于点D;步骤3连接AD,交BC延长线于点H下列叙述正确的是()ABH垂直平分线段ADBAC平分BADCSABC=BCAHDAB=AD4、下列三角形中,等腰三角形的个数是()A4个B3个C2个D1个5、如图,A30,C60,ABC 与ABC关于直线l对称,则B度数为()ABCD6、三名同学分别站在一个三角形三个顶点的位置上,他们在玩抢凳子的游戏,要求在他们中间放一个凳子,抢到凳子者获
3、胜,为使游戏公平,凳子应放的最适当的位置在三角形的()A三条角平分线的交点B三边中线的交点C三边上高所在直线的交点D三边的垂直平分线的交点7、已知的周长是,则下列直线一定为的对称轴的是A的边的中垂线B的平分线所在的直线C的边上的中线所在的直线D的边上的高所在的直线8、观察下列作图痕迹,所作CD为ABC的边AB上的中线是()ABCD9、下列图案是几家银行的标志,其中是轴对称图形的有()A1个B2个C3个D4个10、如图,已知是的角平分线,是的垂直平分线,则的长为()A6B5C4D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图将长方形折叠,折痕为,的对应边与交于点,若
4、,则的度数为_2、BC是等腰ABC和等腰DBC的公共底(A与D不重合),则直线AD必是_的垂直平分线3、如图,若,则线段长为_ 4、如图,已知ABCADE,且点B与点D对应,点C与点E对应,点D在BC上,BAE=114,BAD=40,则E的度数是_5、如图,在等腰直角三角形ABC中,BAC90,在BC上截取BDBA,作ABC的平分线与AD相交于点P,连接PC,若ABC的面积为2cm2,则BPC的面积为 _cm2三、解答题(5小题,每小题10分,共计50分)1、如图,在中,边的垂直平分线分别交,于点.(1)求证:为的中点;(2)若,求的长.2、如图,中,点在边上,求证3、如图,在ABC中,ABA
5、C,D,E是BC边上的点,连接AD,AE,以ADE的边AE所在直线为对称轴作ADE的轴对称图形ADE,连接DC,若BDCD(1)求证:ABDACD(2)若BAC100,求DAE的度数4、如图,中,(1)用直尺和圆规作的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交于点,求的长5、如图,已知ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若ABC=50,求BOC的度数-参考答案-一、单选题1、D【解析】【分析】此题分为两种情况:5cm是等腰三角形的底边长或5cm是等腰三角形的腰长,然后进一步根据三角形的三边关系进行分析能否构成
6、三角形【详解】当5cm是等腰三角形的底边时,则其腰长是(175)26(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是17527(cm),能够组成三角形故该等腰三角形的腰长为:6cm或5cm故选:D【考点】此题考查了等腰三角形的两腰相等的定义,三角形的三边关系,熟练掌握等腰三角形的定义是解题的关键2、B【解析】【分析】根据题意逐个证明即可,只要证明,即可证明;利用三角形的外角性质即可证明; 作于,于,再证明即可证明平分.【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;正确的个数有3个;故选B【考点】本题是一道几何的综合型
7、题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.3、A【解析】【详解】解:A如图连接CD、BD,CA=CD,BA=BD,点C、点B在线段AD的垂直平分线上,直线BC是线段AD的垂直平分线,故A正确,符合题意;B CA不一定平分BDA, 故B错误,不符合题意;C应该是SABC=BCAH,故C错误,不符合题意;D根据条件AB不一定等于AD, 故D错误,不符合题意故选A4、B【解析】【分析】根据题图所给信息,根据边或角分析即可【详解】解:第一个图形中有两边相等,故第一个三角形是等腰三角形, 第二个图形中的三个角分别为50,35,95,故第二个三角形不是等腰三角形;第三个图形中
8、的三个角分别为100,40,40,故第三个三角形是等腰三角形;第四个图形中的三个角分别为90,45,45,故第四个三角形是等腰三角形;故答案为:B【考点】本题考查了等腰三角形的判定,掌握等腰三角形的判定是解题的关键5、C【解析】【分析】由已知条件,根据轴对称的性质可得CC30,利用三角形的内角和等于180可求答案【详解】ABC与ABC关于直线l对称,AA30,CC60;B18030-6090故选:C【考点】主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是1806、D【解析】【分析】根据题意可知,凳子的位置应该到三个顶点的距离相等,从而可确定答案【详解】因
9、为三边的垂直平分线的交点到三角形三个顶点的距离相等,这样就能保证凳子到三名同学的距离相等,以保证游戏的公平,故选:D【考点】本题主要考查垂直平分线的应用,掌握垂直平分线的性质是关键7、C【解析】【分析】首先判断出是等腰三角形,AB是底边,然后根据等腰三角形的性质和对称轴的定义判断即可【详解】解:,是等腰三角形,AB是底边,一定为的对称轴的是的边上的中线所在的直线,故选:C【考点】本题考查了等腰三角形的判定和性质以及对称轴的定义,判断出是等腰三角形,AB是底边是解题的关键8、B【解析】【分析】根据题意,CD为ABC的边AB上的中线,就是作AB边的垂直平分线,交AB于点D,点D即为线段AB的中点,
10、连接CD即可判断【详解】解:作AB边的垂直平分线,交AB于点D,连接CD,点D即为线段AB的中点,CD为ABC的边AB上的中线故选:B【考点】本题主要考查三角形一边的中线的作法;作该边的中垂线,找出该边的中点是解题关键9、C【解析】【分析】根据轴对称图形的概念“如果一个图形沿着一条直线折叠,直线两旁的部分能够相互重合的图形”可直接进行排除选项【详解】解:都是轴对称图形,而不是轴对称图形,所以是轴对称图形的有3个;故选C【考点】本题主要考查轴对称图形的识别,熟练掌握轴对称图形的概念是解题的关键10、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及A=90可求得C=DBC=ABD=
11、30,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】ED是BC的垂直平分线,DB=DC,C=DBC,BD是ABC的角平分线,ABD=DBC,A=90,C+ABD+DBC=90,C=DBC=ABD=30,BD=2AD=6,CD=6,CE =3,故选D【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.二、填空题1、70【解析】【分析】依据矩形的性质以及折叠的性质,即可得到DFE=BEF,设BEF=,则DFE=BEF=,根据BECF,即可得出BEF+CFE=180,进而得到BE
12、F的度数【详解】解:四边形ABCD是矩形,ABDC,BEF=DFE,由折叠可得,BEF=BEF,设BEF=,则DFE=BEF=,BECF,BEF+CFE=180,即+40=180,解得=70,BEF=70,故答案为:70【考点】本题考查折叠问题以及矩形的性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等2、BC【解析】【分析】根据题意作图,再由“到线段两个端点距离相等的点在线段的垂直平分线上”及“两点确定一条直线”即可解答【详解】如图,根据题意得ABAC,DBDC,点A、D都在BC的垂直平分线上两点确定一条直线,直线AD是BC的垂直平分线故
13、答案为:BC【考点】此题考查了线段垂直平分线性质的逆定理及直线的公理,属基础题3、8【解析】【分析】过点D作DHAC于H,由等腰三角形的性质可得AH=HC,DAC=DCA=30,由直角三角形的性质可证DH=CF,由“AAS”可证DHEFCE,可得EH=EC,即可求解【详解】解:如图,过点D作DHAC于H, 在DHE和FCE中, 故答案为8【考点】本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是解题的关键4、36【解析】【分析】根据全等三角形的性质得出AB=AD,ABD=ADE,根据等腰三角形的性质和三角形内角和定理求出ABD=70,求出DAE和ADE,再根据三
14、角形内角和定理求出E即可【详解】解:ABCADE,AB=AD,ABD=ADB,BAD=40,ABD=ADB=(180-BAD)=70,ABCADE,ADE=ABD=70,BAE=114,BAD=40,DAE=BAE-BAD=114-40=74,E=180-ADE-DAE=180-70-74=36,故答案为:36【考点】本题考查了全等三角形的性质,等腰三角形的性质,三角形内角和定理等知识点,能熟记全等三角形的对应边相等和全等三角形的对应角相等是解此题的关键5、1【解析】【分析】根据等腰三角形三线合一的性质即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案【详解】B
15、DBA,BP是ABC的角平分线,和是等底同高的三角形,和是等底同高的三角形,故答案为:1【考点】本题考查等腰三角形的性质掌握等腰三角形“三线合一”是解答本题的关键三、解答题1、(1)详见解析;(2).【解析】【分析】(1)连接CE,根据垂直平分线的性质得到EC=EA,再根据等腰三角形的性质得到EC=EB,进而即可得解;(2)根据含有30角的直角三角形的性质即可得解.【详解】(1)如下图,连接EC,DE是AC的垂直平分线EA=ECEC=EBEB=EA为的中点;(2)DE是AC的垂直平分线,BE=AE.【考点】本题主要考查了垂直平分线的性质及等腰三角形的性质,以及含有30角的直角三角形的性质,熟练
16、掌握相关三角形的性质是解决本题的关键.2、证明见解析【解析】【分析】先根据等腰三角形的性质可得,再根据线段的和差可得,然后根据三角形的判定与性质即可得证【详解】,即,在和中,即【考点】本题考查了等腰三角形的性质、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键3、(1)见解析;(2)【解析】【分析】(1)由对称得到,再证明 即可;(2)由全等三角形的性质,得到,BAC=100,最后根据对称图形的性质解题即可【详解】解:(1)以ADE的边AE所在直线为对称轴作ADE的轴对称图形A,在ABD与中, (2) ,BAC=100,以ADE的边AE所在直线为对称轴作ADE的
17、轴对称图形A,DAE【考点】本题考查全等三角形的判定与性质、轴对称的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键4、(1)详见解析;(2)【解析】【分析】(1)分别以,为圆心,大于为半径画弧,两弧交于点,作直线即可(2)设,在中,利用勾股定理构建方程即可解决问题【详解】(1)如图直线即为所求(2)垂直平分线段,设,在中,解得,【考点】本题考查作图基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型5、(1)证明见解析;(2)BOC=100【解析】【分析】(1)首先根据等腰三角形的性质得到ABC=ACB,然后利用高线的定义得到ECB=DBC,从而得证;(2)首先求出A的度数,进而求出BOC的度数【详解】解:(1)证明:AB=AC,ABC=ACB,BD、CE是ABC的两条高线,DBC=ECB,OB=OC;(2)ABC=50,AB=AC,A=180250=80,BOC=360-18080=100【考点】考点:等腰三角形的性质