收藏 分享(赏)

人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx

上传人:a**** 文档编号:877270 上传时间:2025-12-17 格式:DOCX 页数:21 大小:299.99KB
下载 相关 举报
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第1页
第1页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第2页
第2页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第3页
第3页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第4页
第4页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第5页
第5页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第6页
第6页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第7页
第7页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第8页
第8页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第9页
第9页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第10页
第10页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第11页
第11页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第12页
第12页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第13页
第13页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第14页
第14页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第15页
第15页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第16页
第16页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第17页
第17页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第18页
第18页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第19页
第19页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第20页
第20页 / 共21页
人教版八年级数学上册第十三章轴对称专项测评试卷(含答案解析).docx_第21页
第21页 / 共21页
亲,该文档总共21页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版八年级数学上册第十三章轴对称专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处灯塔C在海岛在海岛A的北偏西42方向上,在

2、海岛B的北偏西84方向上则海岛B到灯塔C的距离是()A15海里B20海里C30海里D60海里2、下列电视台标志中是轴对称图形的是()ABCD3、如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A750米B1000米C1500米D2000米4、下列图案是几家银行的标志,其中是轴对称图形的有()A1个B2个C3个D4个5、如图所示,在33的正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有()A6种B5种C4种D2种

3、6、下列命题是假命题的是()A同旁内角互补,两直线平行B线段垂直平分线上的点到线段两个端点的距离相等C相等的角是对顶角D角是轴对称图形7、若点和点关于轴对称,则点在()A第一象限B第二象限C第三象限D第四象限8、如图,在ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,B60,C25,则BAD为()A50B70C75D809、如图,在中,则()ABCD10、如图是44的正方形网格,其中已有3个小方格涂成了黑色现在要从其余13个白色小方格中选出一个也涂成黑色,与原来3个黑色方格组成的图形成为轴对称图形,则符合要求的白色小正方格有()A1个B2个C3个D4个第卷(非选择题 70分)二

4、、填空题(5小题,每小题4分,共计20分)1、如图,BH 是钝角三角形 ABC 的高,AD 是角平分线, 且2C=90-ABH,若 CD=4,ABC 的面积为 12, 则 AD=_2、点(3,0)关于y轴对称的点的坐标是_3、在平面直角坐标系中,点与点关于轴对称,则的值是_4、如图,在中,分别以点为圆心,大于的长为半径画弧,两弧相交于点作直线,交边于点,连接,则的周长为_5、已知AOB60,OC是AOB的平分线,点D为OC上一点,过D作直线DEOA,垂足为点E,且直线DE交OB于点F,如图所示若DE2,则DF_三、解答题(5小题,每小题10分,共计50分)1、如图,AC,BD交于点O,(1)求

5、证:;(2)若,求C的度数2、已知的三边长分别为,(1)若,求的取值范围;(2)在(1)的条件下,若为奇数,试判断的形状,并说明理由3、尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P(不写画图过程,保留作图痕迹)4、如图,在ABC中,ACB=90,A=30,AB的垂直平分线分别交AB和AC于点D,E. (1)求证:AE=2CE;(2)连接CD,请判断BCD的形状,并说明理由.5、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,A

6、BC的顶点均在格点上,点C的坐标为(4,1)(1)画出ABC的各点纵坐标不变,横坐标乘1后得到的;(2)画出的各点横坐标不变,纵坐标乘1后得到的;(3)点的坐标是;点的坐标是-参考答案-一、单选题1、C【解析】【分析】根据题意画出图形,根据三角形外角性质求出C=CAB=42,根据等角对等边得出BC=AB,求出AB即可【详解】解:根据题意得:CBD=84,CAB=42,C=CBD-CAB=42=CAB,BC=AB,AB=15海里/时2时=30海里,BC=30海里,即海岛B到灯塔C的距离是30海里故选C.【考点】本题考查了等腰三角形的性质和判定和三角形的外角性质,关键是求出C=CAB,题目比较典型

7、,难度不大2、A【解析】【分析】根据轴对称图形的定义进行判断,即一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形【详解】解:A选项中的图形是轴对称图形,对称轴有两条,如图所示;B、C、D选项中的图形均不能沿某条直线折叠,直线两旁的部分能够互相重合,因此,它们都不是轴对称图形;故选:A【考点】本题考查了轴对称图形的概念,其中正确理解轴对称图形的概念是解题关键3、B【解析】【详解】解:作A的对称点,连接B交CD于P,AP+PB=,此时值最小,在中,,,点A到河岸CD的中点的距离为500米,B=AP+PB=1000米4、C【解析】【分析】根据轴对称图形的概念“如果一个

8、图形沿着一条直线折叠,直线两旁的部分能够相互重合的图形”可直接进行排除选项【详解】解:都是轴对称图形,而不是轴对称图形,所以是轴对称图形的有3个;故选C【考点】本题主要考查轴对称图形的识别,熟练掌握轴对称图形的概念是解题的关键5、C【解析】【分析】轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,据此解答即可【详解】如图所示,所标数字1,2,3,4都符合要求,一共有4种方法.故选C【考点】本题重点考查了利用轴对称设计图案,需熟练掌握轴对称图形的定义,应该多加练习6、C【解析】【分析】根据平行线、垂直平分线、对顶角、轴对称图形的性质,逐个分析,即可得到答案

9、【详解】同旁内角互补,则两直线平行,故A正确;线段垂直平分线上的点到线段两个端点的距离相等,故B正确;由对顶角可得是相等的角;相等的角无法证明是对等角,故C错误;角是关于角的角平分线对称的图形,是轴对称图形,故D正确故选:C【考点】本题考查了平行线、垂直平分线、对顶角、轴对称图形、角平分线、命题的知识;解题的关键是熟练掌握平行线、垂直平分线、对顶角、轴对称图形、角平分线的性质,从而完成求解7、D【解析】【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案【详解】点A(a2,3)和点B(1,b5)关于x轴对称,得a2-1,b5-3解得a1,b8则点C(a,b)在第四象限,故选:D

10、【考点】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a2-1,b5-3是解题关键8、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到DAC=C,根据三角形内角和定理求出BAC,计算即可【详解】DE是AC的垂直平分线,DA=DC,DAC=C=25,B=60,C=25,BAC=95,BAD=BAC-DAC=70,故选B【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键9、D【解析】【分析】先根据等腰三角形的性质得到B的度数,再根据平行线的性质得到B

11、CD.【详解】解:AB=AC,A=40,B=ACB=70,CDAB,BCD=B=70,故选D.【考点】本题考查了等腰三角形的性质和平行线的性质,掌握等边对等角是关键,难度不大.10、C【解析】【分析】根据轴对称的性质可直接进行求解【详解】解:如图所示:,共3个,故选:C【考点】本题主要考查轴对称图形的性质,熟练掌握轴对称的性质是解题的关键二、填空题1、3【解析】【分析】根据三角形的外角性质和已知条件易证明ABCC,则可判断ABC为等腰三角形,然后根据等腰三角形的性质可得ADBC,BDCD4,再利用三角形面积公式即可求出AD的长【详解】解:BH为ABC的高,AHB90,BAH90ABH,而2C9

12、0ABH,BAH2C,BAHC+ABC,ABCC,ABC为等腰三角形,AD是角平分线,ADBC,BDCD4,ABC的面积为12,ADBC12,即AD812,AD3故答案为:3【考点】本题考查了三角形的外角性质、等腰三角形的判定和性质以及三角形的面积,熟练掌握上述知识是解题的关键2、(-3,0)【解析】【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可【详解】解:点(m,n)关于y轴对称点的坐标(-m,n),所以点(3,0)关于y轴对称的点的坐标为(-3,0)故答案为:(-3,0).【考点】本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐

13、标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数3、4【解析】【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【考点】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.4、【解析】【分析】由题意可得MN为AB的垂直平分线,所以AD=BD,进一步可以求出的周长.【详解】在中,分别以A、B为圆心,大于的长为半径画弧,两弧交于M,N,作直线MN,交BC边于D,连接AD;MN为AB的垂直

14、平分线,AD=BD,的周长为:AD+DC+AC=BC+AC=13;故答案为13.【考点】本题主要考查的是垂直平分线的运用,掌握定义及相关方法即可.5、4【解析】【分析】过点D作DMOB,垂足为M,则DM=DE=2,在RtOEF中,利用三角形内角和定理可求出DFM=30,在RtDMF中,由30角所对的直角边等于斜边的一半可求出DF的长,此题得解【详解】过点D作DMOB,垂足为M,如图所示OC是AOB的平分线,DMDE2在RtOEF中,OEF90,EOF60,OFE30,即DFM30在RtDMF中,DMF90,DFM30,DF2DM4故答案为4【考点】本题考查了角平分线的性质、三角形内角和定理以及

15、含30度角的直角三角形,利用角平分线的性质及30角所对的直角边等于斜边的一半,求出DF的长是解题的关键三、解答题1、 (1)见解析(2)【解析】【分析】(1)利用AAS证明ABCBAD; (2)利用等腰三角形的性质可判断C=ABC,因为,即可求出C的度数(1)证明:又,(2), 【考点】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件2、(1)1c5;(2)ABC为等腰三角形【解析】【分析】(1)根据三角形的三边关系定理可得3-2c3+2,再解不等式即可;(2)根据c的范围可直接得到答案【详解】解:

16、(1)根据三角形的三边关系定理可得3-2c3+2,即1c5;(2)第三边c为奇数,c=3,a=2,b=3,b=c,ABC为等腰三角形【考点】此题主要考查了三角形的三边关系及等腰三角形的判断,关键是掌握三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边3、见解析.【解析】【分析】分别作线段CD的垂直平分线和AOB的角平分线,它们的交点即为点P【详解】如图,点P为所作【考点】本题考查了作图应用与设计作图,熟知角平分线的性质与线段垂直平分线的性质是解答此题的关键4、见解析【解析】【分析】(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得ABE=A;结

17、合三角形外角的性质可得BEC的度数,再在RtBCE中结合含30角的直角三角形的性质,即可证明第(1)问的结论;(2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到ABC=60,至此不难判断BCD的形状【详解】(1)证明:连结BE,如图DE是AB的垂直平分线,AEBE,ABEA30,CBEABCABE30,在RtBCE中,BE2CE,AE2CE.(2)解:BCD是等边三角形理由如下:DE垂直平分AB,D为AB的中点ACB90,CDBD.又ABC60,BCD是等边三角形【考点】此题考查了线段垂直平分线的性质、30角的直角三角形的性质,等腰三角形的性质,直角三角形斜

18、边的中线等于斜边的一半,等边三角形的判定,熟练掌握30角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边的一半是解(2)的关键,5、(1)见解析(2)见解析(3)(4,1);(4,1)【解析】【分析】(1)ABC的各点纵坐标不变,横坐标乘-1后的坐标首先写出,然后在数轴上表示出来,顺次连接;(2)A1B1C1的各点横坐标不变,纵坐标乘-1后的坐标首先写出,然后在数轴上表示出来,顺次连接;(3)根据(1)(2)即可直接写出【详解】(1)A1的坐标是(-1,-4),B1的坐标是(-5,-4),C1的坐标是(-4,-1),如图,A1B1C1为所作;(2)A2的坐标是(-1,4),B2的坐标是(-5,4),C2的坐标是(-4,1),如图,A2B2C2为所作;(3)C1的坐标是(4,1),C2的坐标是(4,1)故答案是:(4,1),(4,1)【考点】本题考查了坐标与图形的变化轴对称变换,根据题目的叙述求得A1B1C1和A2B2C2的坐标是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1