1、教学目标:教学过程:一创设情景函数导数四种常见函数、的导数公式及应用二新课讲授(一)基本初等函数的导数公式表函数导数(二)导数的运算法则导数运算法则123(2)推论: (常数与函数的积的导数,等于常数乘函数的导数)三典例分析例1假设某国家在20年期间的年均通货膨胀率为,物价(单位:元)与时间(单位:年)有如下函数关系,其中为时的物价假定某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:根据基本初等函数导数公式表,有所以(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨例2根据基本初等函数的导数公式和导数运算法则,求下列函数的导数(
2、1)(2)y ;(3)y x sin x ln x;(4)y ;(5)y (6)y (2 x25 x 1)ex(7) y 【点评】 求导数是在定义域内实行的 求较复杂的函数积、商的导数,必须细心、耐心例3日常生活中的饮水通常是经过净化的随着水纯净度的提高,所需净化费用不断增加已知将1吨水净化到纯净度为时所需费用(单位:元)为求净化到下列纯净度时,所需净化费用的瞬时变化率:(1) (2)解:净化费用的瞬时变化率就是净化费用函数的导数(1) 因为,所以,纯净度为时,费用的瞬时变化率是52.84元/吨(2) 因为,所以,纯净度为时,费用的瞬时变化率是1321元/吨 函数在某点处导数的大小表示函数在此点附近变化的快慢由上述计算可知,它表示纯净度为左右时净化费用的瞬时变化率,大约是纯净度为左右时净化费用的瞬时变化率的25倍这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快四课堂练习1课本P92练习2已知曲线C:y 3 x 42 x39 x24,求曲线C上横坐标为1的点的切线方程;(y 12 x 8)五回顾总结(1)基本初等函数的导数公式表(2)导数的运算法则六布置作业