ImageVerifierCode 换一换
格式:DOC , 页数:17 ,大小:556KB ,
资源ID:87184      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-87184-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《名师伴你行》2015届高考理科数学二轮复习专题 提能专训20 第20讲 圆锥曲线的方程与性质WORD版含解析.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《名师伴你行》2015届高考理科数学二轮复习专题 提能专训20 第20讲 圆锥曲线的方程与性质WORD版含解析.doc

1、高考资源网() 您身边的高考专家提能专训(二十)圆锥曲线中的综合问题一、选择题1(2014吉林实验中学模拟)如图,F1,F2是双曲线C1:x21与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点若|F1F2|F1A|,则C2的离心率是()A. B.C.或 D.答案B解析由C1:x21知,c2,|F1F2|F1A|4,又|F1A|F2A|2,|F2A|2.又由椭圆的定义知2a|F1A|F2A|6,a3,e.2(2014北京朝阳区期末)已知正方形的四个顶点分别为O(0,0),A(1,0),B(1,1),C(0,1),点D,E分别在线段OC,AB上运动,且ODBE,设AD与OE交于点G,则点G

2、的轨迹方程是()Ayx(1x)(0x1) Bxy(1y)(0y1)Cyx2(0x1) Dy1x2(0x1)答案A解析设D(0,),E(1,1)(01),所以线段AD方程为yx(0x1),线段OE方程为y(1)x(0x1),联立方程组(为参数),消去参数得点G的轨迹方程为yx(1x)(0x1),故A正确3(2014石家庄质检)已知双曲线1(a0,b0)的左、右焦点分别为F1,F2,点O为坐标原点,点P在双曲线右支上,PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则|OA|与|OB|的长度依次为()Aa,a Ba, C., D.,a答案A解析设|AF1|x,|

3、AF2|y,由双曲线定义得|PF1|PF2|2a,由三角形内切圆的性质得xy2a,又xy2c,xac,|OA|a.延长F2B交PF1于点C,PQ为F1PF2的角平分线,|PF2|PC|,再由双曲线定义得|CF1|2a,|OB|a,故选A.4(2014青岛一模)如图,从点M(x0,4)发出的光线,沿平行于抛物线y28x的对称轴方向射向此抛物线上的点P,经抛物线反射后,穿过焦点射向抛物线上的点Q,再经抛物线反射后射向直线l:xy100上的点N,经直线反射后又回到点M,则x0等于()A5 B6 C7 D8答案B解析由题意可知,p4,F(2,0),P(2,4),Q(2,4),QN:y4,直线QN,MN

4、关于l:xy100对称,即直线l平分直线QN,MN的夹角,所以直线MN垂直于y轴解得N(6,4),故x0等于6.故选B.5(2014石家庄质量检测二)已知两定点A(2,0)和B(2,0),动点P(x,y)在直线l:yx3上移动,椭圆C以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A. B. C. D.答案B解析由题意可知,c2,由e可知,e最大时需a最小,由椭圆的定义|PA|PB|2a,即使得|PA|PB|最小,设A(2,0)关于直线yx3的对称点D(x,y),由可知D(3,1)所以|PA|PB|PD|PB|DB|,即2a,所以a,则e.故选B.6(2014武汉调研)椭圆C:1的左、

5、右顶点分别为A1,A2,点P在C上且直线PA2斜率的取值范围是2,1,那么直线PA1斜率的取值范围是()A. B.C. D.答案B解析椭圆的左顶点为A1(2,0)、右顶点为A2(2,0),设点P(x0,y0),则1,得.而kPA2,kPA1,所以kPA2kPA1.又kPA22,1,所以kPA1.7(2014杭州二检)设F1,F2为椭圆C1:1(a1b10)与双曲线C2的公共的左、右焦点,它们在第一象限内交于点M,MF1F2是以线段MF1为底边的等腰三角形,且|MF1|2.若椭圆C1的离心率e,则双曲线C2的离心率的取值范围是()A. B.C(1,4 D.答案D解析设双曲线C2的方程为1(a20

6、,b20),由已知|MF1|2,|F1F2|MF2|2c,又根据椭圆与双曲线的定义得到:a1a22c,其中2a1、2a2分别为椭圆的长轴长和双曲线的实轴长,椭圆的离心率e,ca1c,而a2a12c,ca2c,4,故选D.8(2014湖南六校联考)已知双曲线T:1(a0,b0)的右焦点为F(2,0),且经过点R,ABC的三个顶点都在双曲线T上,O为坐标原点,设ABC三条边AB,BC,AC的中点分别为M,N,P,且三条边所在直线的斜率分别为k1,k2,k3,ki0,i1,2,3.若直线OM,ON,OP的斜率之和为1,则的值为()A1 B C1 D.答案B解析由已知可得c2,a,b,双曲线为1,令A

7、(x1,y1),B(x2,y2),C(x3,y3),M(xM,yM),N(xN,yN),P(xP,yP),由点差法得k12,同理可得k22,k32,又kOMkONkOP12,所以.9(2014河南豫东、豫北联考一)已知F1,F2分别是双曲线1(a0,b0)的左、右焦点,P为双曲线上一点,若F1PF290,且F1PF2的三边长成等差数列,则双曲线的离心率是()A2 B3 C4 D5答案D解析设|PF1|m,|PF2|n,不妨设P在第一象限,则由已知得5a26acc20,方程两边同除a2得,即e26e50,解得e5或e1(舍去),故选D.10(2014浙江名校联盟联考)过双曲线1(a0,b0)上任

8、意一点P,作与实轴平行的直线,交两渐近线于M,N两点,若2b2,则该双曲线的离心率为()A. B. C. D.答案C解析由条件知,双曲线两渐近线方程为yx,设P(x0,y0),则1,xa2,由yy0与yx,得M,N,x0,0xa22b2,又b2c2a2,3a22c2,e.二、填空题11(2014唐山一模)过抛物线C:y24x的焦点F作直线l交抛物线C于A,B两点,若A到抛物线的准线的距离为4,则|AB|_.答案解析y24x,抛物线的准线为x1,F(1,0)又A到抛物线准线的距离为4,xA14,xA3.xAxB1,xB.|AB|xAxBp32.12(2014绵阳诊断)已知P是以F1,F2为焦点的

9、椭圆1(ab0)上的任意一点,若PF1F2,PF2F1,且cos ,sin(),则此椭圆的离心率为_答案解析依题意,e.由已知得0cos(),即cos()0,b0)的离心率为,圆C是以坐标原点O为圆心,实轴为直径的圆过双曲线第一象限内的任一点P(x0,y0)作圆C的两条切线,其切点分别为A,B.若直线AB与x轴、y轴分别相交于M,N两点,则的值为_答案解析由题知P、A、O、B四点共圆,其方程为22(xy),又圆C的方程为x2y2a2,两式作差,得公共弦AB的方程为:x0xy0ya2,分别令x0,y0,得|ON|,|OM|.又点P(x0,y0)在双曲线上,故1,即b2xa2ya2b2.又e22,

10、所以.故.14(2014杭州二检)设抛物线C:y22px(p0),A为抛物线上一点(A不同于原点O),过焦点F作直线平行于OA,交抛物线C于P,Q两点若过焦点F且垂直于x轴的直线交直线OA于B,则|FP|FQ|OA|OB|_.答案0解析设OA所在的直线的斜率为k,则由得到A,易知B,联立方程组,消去x得,y0,设P(x1,y1),Q(x2,y2),由根与系数的关系得,y1y2p2,根据弦长公式,|FP|FQ|y1|y2|y1y2|p2,而|OA|OB|p2,|FP|FQ|OA|OB|0.三、解答题15(2014贵阳适应性考试)如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x22p

11、y(p0)上(1)求抛物线E的方程;(2)设动直线l与抛物线E相切于点P,与直线y1相交于点Q,以PQ为直径的圆是否恒过y轴上某定点M,若存在,求出M的坐标;若不存在,请说明理由解:(1)依题意,得|OB|8,根据对称性知,BOy30.设点B(x,y),则x8sin 304,y8cos 3012,所以B(4,12)在抛物线上,所以(4)22p12,解得p2,抛物线E的方程为x24y.(2)设点P(x0,y0)(x00),因为yx2,yx,直线l的方程为yy0x0(xx0),即yx0xx.由得所以Q.设满足条件的定点M存在,坐标为M(0,y1),所以(x0,y0y1),又0,所以y0y0y1y1

12、y0,又y0x(x00),联立解得y11,故以PQ为直径的圆过y轴上的定点M(0,1)16(2014新疆二次检测)在平面直角坐标系xOy中,动点P到定点(1,0)的距离与到定直线x2的距离之比为,设动点P的轨迹为C.(1)求出轨迹C的方程;(2)设动直线l:ykx与曲线C交于A,B两点,问在y轴上是否存在定点G,使AGB为直角?若存在,求出G的坐标,并求AGB面积的最大值;若不存在,请说明理由解:(1)设P(x,y),则依题意有,化简得y21.(2)由得(2k21)x2kx0.设A(x1,y1),B(x2,y2),G(0,m),则x1x2,x1x2,x1x2(y1m)(y2m)(k21)x1x

13、2k(x1x2)m2m,若对任意kR,0恒成立,则需解得m1.因此,存在点G(0,1),使得AGB为直角又点G到AB的距离d,所以,SAGB|AB|d,设t2k21,t1,),则SAGB,当且仅当t1时,上式等号成立因此,AGB 面积的最大值是.17(2014云南统检)已知F1,F2分别是椭圆E:1(ab0)的左、右焦点,P是椭圆E上的点,以F1P为直径的圆经过F2,a2.直线l经过F1,与椭圆E交于A,B两点,F2与A,B两点构成ABF2.(1)求椭圆E的离心率;(2)设F1PF2的周长为2,求ABF2的面积S的最大值解:(1)F1,F2分别是椭圆E的左、右焦点,P是椭圆E上的点,以F1P为

14、直径的圆经过F2,PF2x轴|PF2|.又a2,|PF2|2a2,即a.a24b2,即a24(a2c2),化简得3a24c2,所以.椭圆E的离心率等于.(2)F1PF2的周长为2,2a2c2.解方程组得b2.椭圆E的方程为x24y21.当直线l斜率不存在时,ABF2的面积S2c.当直线l斜率存在时,设斜率为k,由F2与A,B两点构成ABF2,得k0.由已知得直线l的方程为yk,即2kx2yk0.F2到直线l的距离d.由得(14k2)x24k2x3k210.|AB|.S|AB|d.ABF2的面积S的最大值为.又,综上,ABF2的面积S的最大值为.18(2014南昌一模)已知点P在椭圆C:1(ab

15、0)上,过椭圆C的右焦点F2(1,0)的直线l与椭圆C交于M,N两点(1)求椭圆C的方程;(2)若AB是椭圆C经过原点O的弦,且MNAB,W.试判断W是否为定值?若W为定值,请求出这个定值;若W不是定值,请说明理由解:(1)椭圆C的右焦点坐标为(1,0),c1,椭圆C的左焦点坐标为(1,0),可得2a4,解得a2,b2a2c2413,椭圆C的标准方程为1.(2)当直线斜率不存在时,|AB|2(2b)24b2,|MN|,W2a4.当直线斜率存在时,设直线l的方程为yk(x1)(k0),且M(x1,y1),N(x2,y2)由得(34k2)x28k2x4k2120,x1x2,x1x2,|MN|x1x2|.设直线AB的方程为ykx(k0),由消去y,并整理,得x2,设A(x3,y3),B(x4,y4),则|AB|x3x4|4,W4.综上,W为定值4.- 17 - 版权所有高考资源网

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3