1、高考大题规范练(六)概率与统计1(2015北京卷)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“”表示购买,“”表示未购买。商品顾客人数甲乙丙丁1002172003008598(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为0.2。(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙
2、、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品。所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为0.3。(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为0.2,顾客同时购买甲和丙的概率可以估计为0.6,顾客同时购买甲和丁的概率可以估计为0.1。所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大。2(2015福建卷)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标。根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示。组号分组频数
3、14,5)225,6)836,7)747,83(1)现从融合指数在4,5)和7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在7,8内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数。解解法一:(1)融合指数在7,8内的“省级卫视新闻台”记为A1,A2,A3;融合指数在4,5)内的“省级卫视新闻台”记为B1,B2。从融合指数在4,5)和7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:A1,A2,A1,A3,A2,A3,A1,B1,A1,B2,A2,B1,A2,B2,A3,B1,A3,B2,B1,B2,共10个。其中,至少有1家融合
4、指数在7,8内的基本事件是:A1,A2,A1,A3,A2,A3,A1,B1,A1,B2,A2,B1,A2,B2,A3,B1,A3,B2,共9个。所以所求的概率P。(2)这20家“省级卫视新闻台”的融合指数平均数等于4.55.56.57.56.05。解法二:(1)融合指数在7,8内的“省级卫视新闻台”记为A1,A2,A3;融合指数在4,5)内的“省级卫视新闻台”记为B1,B2。从融合指数在4,5)和7,8内的“省级卫视新闻台”中随机抽取2家的所有的基本事件是:A1,A2,A1,A3,A2,A3,A1,B1,A1,B2,A2,B1,A2,B2,A3,B1,A3,B2,B1,B2,共10个。其中,没
5、有1家融合指数在7,8内的基本事件是:B1,B2,共1个。所以所求的概率P1。(2)同解法一。3(2015广东卷)某城市100户居民的月平均用电量(单位:度),以160,180),180,200),200,220),220,240),240,260),260,280),280,300分组的频率分布直方图如图。(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为220,240),240,260),260,280),280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在220,240)的用户中应抽取多少户?解(1)由(0.0020.009 50.
6、0110.012 5x0.0050.002 5)201,得x0.007 5,所以直方图中x的值是0.007 5。(2)月平均用电量的众数是230。因为(0.0020.009 50.011)200.45,因此可看出A药的疗效更好。(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A药疗效的试验结果有的叶集中在茎2,3上,而B药疗效的试验结果有的叶集中在茎0,1上,由此可看出A药的疗效更好。5(2015河北唐山一模)为了研究某种细菌在特定环境下随时间变化的繁殖情况,得如下实验数据:天数t(天)34567繁殖个数y(千个)2.5344.56(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,预测t8时,细菌的繁殖个数。附:回归直线的斜率和截距的最小二乘法估计公式分别为:,。解(1)由表中数据计算得,5,4,(ti)(yi)8.5,(ti)210,0.85,0.25。所以回归方程为0.85t0.25。(2)将t8代入(1)的回归方程中得0.8580.256.55。故预测t8时,细菌繁殖个数为6.55千个。