收藏 分享(赏)

京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx

上传人:a**** 文档编号:856660 上传时间:2025-12-16 格式:DOCX 页数:27 大小:687.50KB
下载 相关 举报
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第1页
第1页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第2页
第2页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第3页
第3页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第4页
第4页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第5页
第5页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第6页
第6页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第7页
第7页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第8页
第8页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第9页
第9页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第10页
第10页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第11页
第11页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第12页
第12页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第13页
第13页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第14页
第14页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第15页
第15页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第16页
第16页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第17页
第17页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第18页
第18页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第19页
第19页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第20页
第20页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第21页
第21页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第22页
第22页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第23页
第23页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第24页
第24页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第25页
第25页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第26页
第26页 / 共27页
京改版八年级数学上册第十二章三角形综合训练练习题(详解).docx_第27页
第27页 / 共27页
亲,该文档总共27页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册第十二章三角形综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列三角形中,等腰三角形的个数是()A4个B3个C2个D1个2、下列四组数中,是勾股数的是()A5,12,13B4

2、,5,6C2,3,4D1,3、若三角形的三边为a,b,c、满足a2+b2+c2+506a+8b+10c,此三角形的形状是()A锐角三角形B直角三角形C钝角三角形D不确定4、在ABC中,那么ABC是()A等腰三角形B钝角三角形C直角三角形D等腰直角三角形5、如图,按以下步骤进行尺规作图:(1)以点为圆心,任意长为半径作弧,交的两边,分别于,两点;(2)分别以点,为圆心,大于的长为半径作弧,两弧在内交于点;(3)作射线,连接,下列结论错误的是()A垂直平分BCD6、如图,在中,过点作,交于点,若,则的长度为()ABCD7、如图,在中,角平分线交于点,则点到的距离是( )AB2CD38、如图,在中,

3、平分,于点的角平分线所在直线与射线相交于点,若,且,则的度数为()ABCD9、如图,在中,是的平分线,若,则 ()ABCD10、如图,在四边形ABCD中,分别以点A,C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O若点O是AC的中点,则CD的长为()AB4C3D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知 O 为ABC 三边垂直平分线的交点,且A50,则BOC 的度数为_度 2、如图,在中,D、E是内两点AD平分,若,则_cm3、如图,在四边形ABCD中,那么四边形ABCD的面积是_4、如图,BE、CE分别为的内、外角平分线,

4、BF、CF分别为的内、外角平分线,若,则_度5、如图,已知,是角平分线且,作的垂直平分线交于点F,作,则周长为_三、解答题(5小题,每小题10分,共计50分)1、一个零件形状如图所示,按规定应等于75,和应分别是18和22,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由2、如图,已知线段a、b和,用尺规作一个三角形,使(要求:不写已知、求作、作法、只画图,保留作图痕迹)3、如图,在中,垂足为,延长至,使得,连接(1)求证:;(2)若,求的周长和面积4、如图,在中,,;点在上,连接并延长交于(1)求证:;(2)求证:;(3)若,与有什么数量关系?请说明理由5、如

5、图,四边形ABCD中,C90,ADDB,点E为AB的中点,DEBC.(1)求证:BD平分ABC;(2)连接EC,若A30,DC,求EC的长.-参考答案-一、单选题1、B【解析】【分析】根据题图所给信息,根据边或角分析即可【详解】解:第一个图形中有两边相等,故第一个三角形是等腰三角形, 第二个图形中的三个角分别为50,35,95,故第二个三角形不是等腰三角形;第三个图形中的三个角分别为100,40,40,故第三个三角形是等腰三角形;第四个图形中的三个角分别为90,45,45,故第四个三角形是等腰三角形;故答案为:B【考点】本题考查了等腰三角形的判定,掌握等腰三角形的判定是解题的关键2、A【解析】

6、【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方【详解】解:A、52+122132,都是正整数,是勾股数,故此选项符合题意;B、42+5262,不是勾股数,故此选项不合题意;C、22+3242,不是勾股数,故此选项不合题意;D、,不是正整数,不是勾股数,故此选项不合题意;故选:A【考点】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数3、B【解析】【分析】已知等式变形后,利用完全平方公式化简,利用非负数的性质求出a,b,c的值,即可做出判断【详解】解:根据题意得:

7、a2+b2+c2+50-6a-8b-10c=0,(a3)2(b5)2(c5)20,a30,b50,c50,a3,b4,c5,a2b2=c2,则三角形形状为直角三角形故选:B【考点】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键4、D【解析】【分析】根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可【详解】a:b:c=1:1:,三角形ABC是等腰三角形设三边长为a,a,,三角形ABC是直角三角形综上所述:ABC是等腰直角三角形故选D【考点】本题考查了等腰三角形的判定和勾股定理逆定理此题关键是利用勾股定理的逆定理解答5、D【解析】【分析】利用全等三角形的性质以及线段的垂直平分线

8、的判定解决问题即可【详解】解:由作图可知,在OCD和OCE中,OCDOCE(SSS),DCO=ECO,1=2,OD=OE,CD=CE,OC垂直平分线段DE,故A,B,C正确,没有条件能证明CE=OE,故选:D【考点】本题考查了作图-基本作图,全等三角形的判定和性质,线段的垂直平分线的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题6、B【解析】【分析】根据题意可求出,即推出AD=BD=1在中,利用含角的直角三角形的性质即可求出CD长【详解】,AB=AC,AD=BD=1,在中,BD=1故选:B【考点】本题考查等腰三角形的判定和性质、含角的直角三角形的性质掌握含角的直角三角形中,角所对的

9、边等于斜边的一半是解答本题的关键7、A【解析】【分析】作DEAC于E,作DFBC于F,根据勾股定理可求AC,根据角平分线的性质可得DE=DF,再根据三角形面积公式即可求解【详解】解:作DEAC于E,作DFBC于F,在RtACB中,CD是角平分线,DE=DF,即,解得DE=故点D到AC的距离是故选:A【考点】本题考查了勾股定理,角平分线的性质,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;角平分线的性质:角的平分线上的点到角的两边的距离相等8、C【解析】【分析】由角平分线的定义可以得到,设,假设,通过角的等量代换可得到,代入的值即可【详解】平分,平分,设

10、可以假设,设,则故答案选:C【考点】本题主要考查了角平分线的定义以及角的等量代换,三角形的内角和定理,外角的性质,二元一次方程组的应用,灵活设立未知数代换角是解题的关键9、A【解析】【分析】过点D作于点E,根据角平分线的性质得 ,DEDC再根据三角形面积公式即可求解【详解】解:过点D作于点E,在中,是的平分线,故答案为:A【考点】本题考查了角平分线的性质,三角形的面积,正确理解角平分线的性质是解本题的关键10、A【解析】【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出再根据ASA证明,那么,等量代换得到,利用线段的和差关系求出然后在直角中利用勾股定理求出CD的长【详

11、解】解:如图,连接FC,则,在与中,在中,故选:A【考点】本题考查了作图基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中求出CF与DF是解题的关键二、填空题1、设第三边是x,则2008x20而三角形的周长是偶数,故x为偶数,因而x=2010或2012或2014,满足条件的三角形共有3个故答案为:3个【考点】本题考查了三角形的三边关系已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和16100【解析】【分析】连接AO延长交BC于D,根据线段垂直平分线的性质可得OB=OA=OC,再根据等腰三角形的等边对等角和三角形的外角性质可得BOC=2A,即可

12、求解【详解】解:连接AO延长交BC于D,O 为ABC 三边垂直平分线的交点,OB=OA=OC,OBA=OAB,OCA=OAC,BOD=OBA+OAB=2OAB,COD=OCA+OAC=2OAC,BOC=BOD+COD=2OAB+2OAC=2BAC,BAC=50,BOC=100故答案为:100【考点】本题考查线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质,属于基础题型,熟练掌握它们的性质和运用是解答的关键2、10【解析】【分析】过点E作,垂足为F,延长AD到H,交BC于点H,过点D作,垂足为G,由直角三角形中所对的直角边是斜边的一半可知,然后由等腰三角形三线合一可知,然后再证明四边形D

13、GFH是矩形,从而得到,最后根据计算即可.【详解】解;过点E作,垂足为F,延长AD到H,交BC于点H,过点D作,垂足为G,又,AD平分,且,四边形DGFH是矩形.故答案为:10.【考点】本题主要考查的是等腰三角形的性质,含直角三角形的性质以及矩形的性质和判定,根据题意构造含的直角三角形是解题的关键.3、+24【解析】【分析】连结BD,可求出BD=6,再根据勾股定理逆定理,得出BDC是直角三角形,两个三角形面积相加即可【详解】解:连结BD,BD=6,BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,BDC=90,SABD=,SBDC=,四边形ABCD的面积是= SABD+ SB

14、DC=+24故答案为:+24【考点】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型4、13【解析】【分析】根据BF,CF分别为EBC的内、外角平分线分别设,再根据BE,CE分别为ABC的内,外角平分线,得到和 ,最后根据 和 求出 即可【详解】BF,CF分别为的内、外角平分线,设,又BE,CE分别为的内,外角平分线,又,又,故答案为:13【考点】此题考查了三角形内角和外角角平分线的相关知识,涉及到三角形外角等于与其不相邻的两内角和的知识,有一定难度5、【解析】【分析】知道和是角平分线,就可以求出,的垂直平分线交于点F可以得到AF=FD,在

15、直角三角形中30所对的边等于斜边的一半,再求出DE,得到【详解】解: 的垂直平分线交于点F, (垂直平分线上的点到线段两端点距离相等) ,是角平分线 , 【考点】此题考查角平分线的性质、直角三角形的性质、垂直平分线的性质的综合题,掌握运用三者的性质是解题的关键三、解答题1、不合格,理由见解析【解析】【分析】延长BD与AC相交于点E利用三角形的外角性质,可得,即可求解【详解】解:如图,延长BD与AC相交于点E是的一个外角,同理可得李师傅量得,不是115,这个零件不合格【考点】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键2、见解析【解析】【分析】

16、先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,即可【详解】解:先作,再以为圆心,分别以线段a、b长为半径,画弧与射线、交于点,连接,即为所求,如图所示:【考点】本题考查了复杂作图,利用了作一个角等于已知角,作线段等于已知线段,是基本作图,需熟练掌握解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作3、(1)证明见解析;(2)周长为,面积为22【解析】【分析】(1)先根据垂直的定义可得,再根据三角形全等的判定定理与性质即可得证;(2)先根据全等三角形的性质可得,从而可得,再利用勾股定理可得,从而可得,然后利用勾股定理可得,最后利

17、用三角形的周长公式和面积公式即可得【详解】(1)证明:,在和中,;(2),则的周长为,的面积为【考点】本题考查了三角形全等的判定定理与性质、勾股定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键4、(1)见解析;(2)见解析;(3)若 ,则,理由见解析【解析】【分析】(1)首先利用SAS证明,即可得出结论;(2)利用全等三角形的性质和等量代换即可得出,从而有,则结论可证;(3)直接根据等腰三角形三线合一得出,又因为,则结论可证【详解】解答:(1)证明:, 在和中, ;(2)证明:,即,;(3)若 ,则理由如下:,BE是中线,【考点】本题主要考查全等三角形的判定及性质,等腰三角形的性质,掌握全等三角形的判定及性质和等腰三角形的性质是解题的关键5、(1)见解析;(2).【解析】【分析】(1)直接利用直角三角形的性质得出,再利用DEBC,得出23,进而得出答案;(2)利用已知得出在RtBCD中,360,得出DB的长,进而得出EC的长.【详解】(1)证明:ADDB,点E为AB的中点,.12.DEBC,23.13.BD平分ABC.(2)解:ADDB,A30,160.3260.BCD90,430.CDE2+490.在RtBCD中,360,DB2.DEBE,160,DEDB2.【考点】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1