1、八年级数学上册第十一章实数和二次根式同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数的点P应落在A线段AB上B线段BO上
2、C线段OC上D线段CD上2、在四个实数,0,中,最小的实数是()AB0CD3、把四张形状大小完全相同的小长方形卡片(如图,卡片的长为,宽为)不重叠地放在一个底面为长方形(长为,宽为4)的盒子底部(如图),盒子底面未被卡片覆盖的部分用阴影表示,则图中两块阴影部分的周长和是()ABCD4、定义a*b=ab+a+b,若3*x=27,则x的值是( )A3B4C6D95、下列实数中,为有理数的是()ABC1D6、对于数字-2+,下列说法中正确的是()A它不能用数轴上的点表示出来B它比0小C它是一个无理数D它的相反数为2+7、下列运算正确的是()ABCD8、定义a*b3ab,abba2,则下列结论正确的有
3、()个3*272(1)5(*)()若a*bb*a,则abA1个B2个C3个D4个9、如图,在数轴上表示实数的点可能()A点PB点QC点MD点N10、估计的值应在()A1和2之间B2和3之间C3和4之间D4和5之间第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则_2、的算术平方根是_,的倒数是_3、定义ab=a(b+1),例如23=2(3+1)=24=8则(x1)x的结果为_4、若二次根式有意义,则x的取值范围是_5、如图所示,直径为个单位长度的圆从原点沿着数轴负半轴方向无滑动的滚动一周到达点,则点表示的数是_三、解答题(5小题,每小题10分,共计50分)1、阅读下
4、面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数因此,的小数部分不可能全部地写出来,但可以用来表示的小数部分理由:因为的整数部分是1,将这个数减去其整数部分,差就是小数部分请解答:已知:的小数部分为,的小数部分为b,计算的值2、已知5x19的立方根是4,求2x7的平方根3、对于任意实数、,定义关于“”的一种运算如下:.例如.(1)求的值;(2)若,且,求的值.4、计算(1);(2)5、对于任意实数m、n,定义关于“”的一种运算如下:mn3m2n例如:2532254,(1)43(1)2411(1)若(3)x2021,求x的值;(2)若y610,求y的最小整数解-参考答案-一、单选题1
5、、B【解析】【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质,可得答案【详解】由被开方数越大算术平方根越大,得23,由不等式的性质得:-12-0.故选B.【考点】本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.2、A【解析】【分析】根据实数比较大小的方法直接求解即可【详解】解:,四个实数,0,中,最小的实数是,故选:A【考点】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小3、B【解析】【分析】分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案【详解】较大阴影的周长为:,较小阴影的
6、周长为:,两块阴影部分的周长和为:= , 故两块阴影部分的周长和为16故选B【考点】本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键4、C【解析】【分析】根据运算规则转化为一元一次方程,然后求解即可【详解】解:根据运算规则可知:3*x=27可化为3x+3+x=27, 移项可得:4x=24, 即x=6故选C【考点】本题考查解一元一次方程的解法;解一元一次方程常见的思路有通分,移项,左右同乘除等5、C【解析】【分析】根据有理数是有限小数或无限循环小数可判断C,无理数是无限不循环小数,可判断A、B、D即可【详解】解:,是无理数,1是有理数故选C【考
7、点】本题考查了实数,正确区分有理数与无理数是解题的关键6、C【解析】【分析】根据数轴的意义,实数的计算,无理数的定义,相反数的定义判断即可【详解】A数轴上的点和实数是一一对应的,故该说法错误,不符合题意;B,故该说法错误,不符合题意;C是一个无理数,故该说法正确,符合题意;D的相反数为,故该说法错误,不符合题意;故选:C【考点】本题考查数轴的意义,实数的计算,无理数的定义,相反数的定义,熟练掌握相关计算法则是解答本题的关键7、D【解析】【分析】A.根据同类二次根式的定义解题;B.根据二次根式的乘法法则解题;C.根据完全平方公式解题;D.幂的乘方解题【详解】解:A. 与不是同类二次根式,不能合并
8、,故A错误;B. ,故B错误;C. ,故C错误;D. ,故D正确,故选:D【考点】本题考查实数的混合运算,涉及同类二次根式、二次根式的乘法、完全平方公式、幂的乘方等知识,是重要考点,掌握相关知识是解题关键8、C【解析】【分析】先按照定义书写出正确的式子再进行计算就可解决本题【详解】、,故计算正确,符合题意; 、,故计算正确,符合题意;、,故计算错误,不符合题意; 、,a*bb*a,解得:, 故计算正确,符合题意综上所述,正确的有:,共3个故选:C【考点】本题考查了按照定义运算的知识,严格按照定义书写出正确的式子,准确的计算是解决本题的关键9、C【解析】【分析】确定是在哪两个相邻的整数之间,然后
9、确定对应的点即可解决问题【详解】解:91516,34,对应的点是M故选:C【考点】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解10、B【解析】【详解】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围.【详解】=,=,而,45,所以23,所以估计的值应在2和3之间,故选B.【考点】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.二、填空题1、5【解析】【分析】根据非负数的性质列式求出、的值,然后代入代数式进行计算即可得解【详解】根据题意得,解得,故答案为:5【考点】本题考查了
10、绝对值非负性,算术平方根非负性的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键2、 3 【解析】【分析】先计算的值,再根据算术平方根得定义求解;根据倒数的定义求解即可【详解】解:,9的算术平方根是3,的算术平方根是3;的倒数是;故答案是:3,【考点】本题考查了算术平方根和倒数的应用,主要考查学生的理解能力和计算能力3、x21【解析】【分析】根据规定的运算,直接代值后再根据平方差公式计算即可【详解】解:根据题意得:(x1)x=(x1)(x+1)=x21故答案为:x21【考点】本题考查了平方差公式,实数的运算,理解题目中的运算方法是解题关键4、【解析】【分析】概念二次根式被开
11、方数大于或等于0,分母不为0求解即可【详解】解:二次根式有意义,则且,解得,故答案为:【考点】本题考查了二次根式和分式有意义的条件,解题关键是熟记二次根式和分式有意义 的条件,列出不等式5、-【解析】【分析】直接利用圆的周长公式得出圆的周长,再利用对应数字性质得出答案【详解】由题意可得:圆的周长为,直径为单位1的硬币从原点处沿着数轴负半轴无滑动的逆时针滚动一周到达A点,A点表示的数是:-故答案为:-【考点】此题考查了数轴的特点及圆的周长公式,正确得出圆的周长是解题的关键三、解答题1、1【解析】【分析】先估算2+的大小,算出2+的整数部分,再求出小数部分a,同理求出5的小数部分b,再进行求解【详
12、解】解:23,42+5,2+的整数部分为4,2+的小数部分a=2+-4=-3-225-35-的整数部分为2,5-的小数部分b=5-2=3-a+b=+3-=1【考点】此题主要考查实数的估算,解题的关键是先估算出的大小2、【解析】【分析】由已知根据立方根的定义可得到5x+19=43,继而可求得x的值,进而可以求2x+7的平方根【详解】5x19的立方根是4,5x+19=43,即645x19,解得x=9,2x725,2x7的平方根为=5【考点】本题考查了立方根的定义,平方根的定义,是一个基础的问题,熟练掌握相关定义及求解方法是解题的关键3、(1);(2).【解析】【详解】解:(1);(2)由题意得 4
13、、 (1)-2(2)【解析】【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的除法法则、零指数幂的意义进行计算,然后分母有理化后合并即可(1)原式(2)原式【考点】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可,在二次根式的混合运算中,能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径是解题的关键5、(1)x1015;(2)8【解析】【分析】(1)已知等式利用题中的新定义化简,计算即可求出x的值即可;(2)已知不等式利用题中的新定义化简,求出解集,确定出y的最小整数解即可【详解】解:(1)根据题中的新定义化简(3)x2021,得:92x2021,移项合并得:2x2030,解得:x1015;(2)根据题中的新定义化简y610,得:3y1210,移项合并得:3y22,解得:y的最小整数解是8【考点】本题主要考查了新定义下的实数运算和解一元一次不等式,解题的关键在于能够准确根据题意得到新定义的运算结果.