ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:168.50KB ,
资源ID:850927      下载积分:7 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-850927-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2017《优化方案》高考数学(浙江专用)一轮复习练习:第11章 计数原理、概率 第2知能训练轻松闯关 WORD版含答案.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2017《优化方案》高考数学(浙江专用)一轮复习练习:第11章 计数原理、概率 第2知能训练轻松闯关 WORD版含答案.doc

1、高考资源网() 您身边的高考专家1不等式A6A的解集为()A2,8B2,6C(7,12) D8解析:选D.由题意得6,所以x219x840,解得7x12.又x8,x20,所以7x8,xN*,即x8.2若从1,2,3,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A60种 B63种C65种 D66种解析:选D.共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有CCCC66(种)3(2016山西省考前质量检测)A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐最北面的椅子,B,C二人必

2、须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有()A60种 B48种C30种 D24种解析:选B.由题知,不同的座次有AA48(种),故选B.4(2016绍兴模拟)若两条异面直线所成的角为60,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有()A12对 B18对C24对 D30对解析:选C.依题意,注意到在正方体ABCDA1B1C1D1中,与直线AC构成异面直线且所成的角为60的直线有BC1,BA1,A1D,DC1,注意到正方体ABCDA1B1C1D1中共有12条面对角线,可知所求的“黄金异面直线对”共有24(对),故选C.5(201

3、6唐山模拟)4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有()A24种 B36种C48种 D60种解析:选D.每家企业至少录用一名大学生的情况有两种:一种是一家企业录用一名,有CA24种;一种是其中有一家企业录用2名大学生,有CA36种,所以一共有243660(种),故选D.6(2016台州高三检测)将A,B,C,D,E排成一列,要求A,B,C在排列中顺序为“A,B,C”或“C,B,A”(可以不相邻),这样的排列数有()A12种 B20种C40种 D60种解析:选C.(排序一定用除法)五个元素没有限制全排列数为A,由于要求A,B,C的次序一定(按A

4、,B,C或C,B,A),故除以这三个元素的全排列A,可得240.7若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有_种解析:把g、o、o、d 4个字母排一列,可分两步进行,第一步:排g和d,共有A种排法;第二步:排两个o,共一种排法,所以总的排法种数为A12(种)其中正确的有一种,所以错误的共A112111(种)答案:118(2016东北三省三校一联)某校高一开设4门选修课,有4名同学,每人只选一门,恰有2门课程没有同学选修,共有_种不同的选课方案(用数字作答)解析:4门选修课有2门课程没有同学选修,说明四门只选择两门,有C种选法,每人在这两门课程中选一门有2种选法,共有24

5、16种,排除四人都选同一门课程有2种,所以每人在这两门课程中选一门有16214种,故共有14C14684种不同的选课方案答案:849(2016南京检测)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是_(用数字作答)解析:甲、乙、丙3人站到共有7级的台阶上,共有73343(种)站法,三个人同时站到同一个台阶的站法有7种,故若每级台阶最多站2人,有3437336种站法答案:33610(2016浙江省湖州中学检测)在三位正整数中,若十位数字小于个位和百位数字,则该数为“驼峰数”比如:“102”“546”为“驼峰数”,由数字1,2,3,4,

6、5这五个数字构成的无重复数字的“驼峰数”的十位上的数字之和为_解析:三位“驼峰数”中1在十位的有A个,2在十位的有A个,3在十位上的有A个,所以所有三位“驼峰数”的十位上的数字之和为121622330.答案:3011用五个数字0,1,2,3,4组成没有重复数字的自然数,问:(1)四位数有几个?(2)比3 000大的四位偶数有几个?解:(1)首位数字不能是0,其他三位数字可以任意,所以四位数有CA96(个)(2)若4在首位,则个位数字必是0或2,有CA个数,若3在首位,则个位数字必是0或2或4,有CA个数所以比3 000大的偶数且是四位数的有CACA30(个)12从1到9的9个数字中取3个偶数4

7、个奇数,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中,3个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?解:(1)分三步完成:第一步,在4个偶数中取3个,有C种情况;第二步,在5个奇数中取4个,有C种情况;第三步,3个偶数,4个奇数进行排列,有A种情况所以符合题意的七位数有CCA100 800(个)(2)上述七位数中,3个偶数排在一起的有CCAA14 400(个)(3)(1)的七位数中,3个偶数排在一起,4个奇数也排在一起的有CCAAA5 760(个)15名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有()A1

8、50种 B180种C200种 D280种解析:选A.依题意5个人分配到3个学校且每校至少去一个人,因此可将5人按人数分成1,2,2与1,1,3两种,当人数是1,2,2时,有A90(种)当人数是1,1,3时,则有A60(种),因此共有9060150(种)2(2016浙江省金丽衢十二校联考)从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,10个键同时按下,可发出和声,若有一个音键不同,则发出不同的和声,则这样的不同的和声数为_(用数字作答)解析:由题意知,分别选择3个,4个,5个,10个键同时按下,可发出和声的情况,共分以下8类:当选择3个不同按键时,有C种方法;当选择4个不同按键时,有C种

9、方法;当选择10个不同按键时,有C种方法,所以不同的和声数为CCC(CCCCCC)(CCC)210(11045)968.答案:9683现有男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)既要有队长,又要有女运动员解:(1)任选3名男运动员,方法数为C,再选2名女运动员,方法数为C,共有CC120种方法(2)法一:至少有1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男,由分类加法计数原理可得总选法数为CCCCCCCC246(种)法二:“至少有1名女运动员”的反面

10、是“全是男运动员”,因此用间接法求解,不同选法有CC246(种)(3)当有女队长时,其他人任意选,共有C种选法,不选女队长时,必选男队长,其他人任意选,共有C种选法,其中不含女运动员的选法有C种,所以不选女队长时共有(CC)种选法所以既有队长又有女运动员的选法共有CCC191(种)4有4个不同的球与4个不同的盒子,把球全部放入盒内(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?解:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出一个,问题转化为“4个球,3个盒子,每个盒子都要放入球, 共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球分别放在另外2个盒子内,由分步乘法计数原理知,共有CCCA144(种)(2)恰有1个盒内有2个球,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法(3)确定2个空盒有C种方法4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有CCA种方法;第二类有序均匀分组有A种方法故共有C84(种)高考资源网版权所有,侵权必究!

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3