1、山西省晋中市和诚中学2020届高三物理下学期1月试题(含解析)一、单项选择题(本题共12小题,每小题3分,共36分。每小题只有一个正确选项。)1.如图所示,在光滑绝缘水平面上放置3个电荷量均为q(q0)的相同小球,小球之间用劲度系数均为k0的轻质弹簧绝缘连接当3个小球处在静止状态时,每根弹簧长度为l,已知静电力常量为k,若不考虑弹簧的静电感应,则每根弹簧的原长为( )A. B. C. D. 【答案】B【解析】【详解】对第三个小球受力分析,第三个小球受三个力的作用,它们的关系是解得所以弹簧的原长为故B正确,ACD错误。故选B。2.如图所示,细线的一端系一质量为m的小球,另一端固定在倾角为的光滑斜
2、面体顶端,细线与斜面平行在斜面体以加速度a水平向右做匀加速直线运动的过程中,小球始终静止在斜面上,小球受到细线的拉力T和斜面的支持力为FN分别为(重力加速度为g)()A. Tm(gsinacos),FNm(gcosasin)B. Tm(gcosasin),FNm(gsinacos)C. Tm(acosgsin),FNm(gcosasin)D. Tm(asingcos),FNm(gsinacos)【答案】A【解析】当加速度a较小时,小球与斜面一起运动,此时小球受重力G、绳子拉力T和斜面的支持力FN,绳子平行于斜面;小球的受力如图: 由牛顿第二定律得水平方向上:;竖直方向上,由平衡得:,联立得:,
3、故A正确,BCD错误3.取水平地面为重力势能零点一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等不计空气阻力该物块落地时的速度方向与水平方向的夹角为( )A. B. C. D. 【答案】B【解析】【详解】建立平抛运动模型,设物体水平抛出的初速度为v0,抛出时的高度为h,根据题意,由:解得:;由于竖直方向物体做自由落体运动,则落地的竖直速度:所以落地时速度方向与水平方向的夹角:tan=1则=,故B正确,ACD错误。故选B。4.小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短将两球拉起,使两绳均被水平拉直,如图所示,将两球由静止释放,在各自
4、轨迹的最低点( )A. P球的速度一定大于Q球的速度B. P球的动能一定小于Q球的动能C. P球所受绳的拉力一定大于Q球所受绳的拉力D. P球的向心加速度一定小于Q球的向心加速度【答案】C【解析】从静止释放至最低点,由机械能守恒得:mgR=mv2,解得:,在最低点的速度只与半径有关,可知vPvQ;动能与质量和半径有关,由于P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短,所以不能比较动能的大小故AB错误;在最低点,拉力和重力的合力提供向心力,由牛顿第二定律得:F-mg=m,解得,F=mg+m=3mg,所以P球所受绳的拉力一定大于Q球所受绳的拉力,向心加速度两者相等故C正确,D错误故选C点
5、睛:求最低的速度、动能时,也可以使用动能定理求解;在比较一个物理量时,应该找出影响它的所有因素,全面的分析才能正确的解题5.若有一颗“宜居”行星,其质量为地球的p倍,半径为地球的q倍,则该行星近地卫星的环绕周期是地球近地卫星环绕周期的()A. 倍B. 倍C. 倍D. 倍【答案】C【解析】【详解】由万有引力作为向心力,有得则该行星近地卫星的环绕周期是地球近地卫星环绕周期的倍。故C正确,ABD错误。故选C。6.如图所示,P是固定的点电荷,虚线是以P为圆心的两个圆带电粒子Q在P的电场中运动,运动轨迹与两圆在同一平面内,a、b、c为轨迹上的三个点若Q仅受P的电场力作用,其在a、b、c点的加速度大小分别
6、为、,速度大小分别为、则( )A. ,B. ,C. ,D. ,【答案】B【解析】点电荷的电场强度的特点是离开场源电荷距离越小,场强越大,粒子受到的电场力越大,带电粒子的加速度越大,所以abacaa,根据轨迹弯曲方向判断出,粒子在运动的过程中,一直受静电斥力作用,离电荷最近的位置,电场力对粒子做的负功越多,粒子的速度越小,所以vavcvb,所以B正确,ACD错误点晴:根据带电粒子的运动轨迹弯曲方向,即可判断库仑力是引力还是斥力;电场线密的地方电场的强度大,电场线疏的地方电场的强度小,电场力做正功,速度增大,电场力做负功,速度减小,根据这些知识进行分析即可7.如图所示,M、N和P是以MN为直径的半
7、圆弧上的三点,O为半圆弧的圆心,MOP60,在M、N处各有一条长直导线垂直穿过纸面,导线中通有大小相等的恒定电流,方向如图所示,这时O点的磁感应强度大小为B1.若将M处长直导线移至P处,则O点的磁感应强度大小为B2,那么B2与B1之比为A. 1B. 2C. 11D. 12【答案】B【解析】【详解】根据右手定则,两根导线在O点产生的磁场方向一致,依题意,每根导线在O点产生的磁感强度为,方向竖直向下。则当M处长直导线移至P点时,两根导线在O点产生的磁场方向之间的夹角为60,则O点合磁感强度大小为:,则B2与B1之比为:2,故ACD错误,B正确。故选:B。8.如图,MN为铝质薄平板,铝板上方和下方分
8、别有垂直于图平面的匀强磁场(未画出)一带电粒子从紧贴铝板上表面的P点垂直于铝板向上射出,从Q点穿过铝板后到达PQ的中点O,已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力铝板上方和下方的磁感应强度大小之比为A. 2B. C. 1D. 【答案】D【解析】【分析】带电粒子在匀强磁场中做匀速圆周运动,洛仑兹力提供向心力,从而求出磁感应强度的表达式结合动能,最终得到关于磁感应强度B与动能Ek的关系式,从关系式及题设条件-带电粒子在穿越铝板时减半,就能求出上下磁感应强度之比【详解】由动能公式,带电粒子在匀强磁场中做匀速圆周运动洛仑兹力提供向心力得,联立可得,上下磁场磁感应强度之比为,D
9、正确9.电源的效率定义为外电路电阻消耗的功率与电源的总功率之比在测电源电动势和内电阻的实验中得到的实验图线如图所示,图中U为路端电压,I为干路电流,a、b为图线上的两点,相应状态下电源的效率分别为、由图可知、的值分别为A. 、B. 、C. 、D. 、【答案】D【解析】电源的效率定义为外电路电阻消耗的功率与电源的总功率之比 ,E为电源的总电压(即电动势),在UI图象中,纵轴截距表示电动势,根据图象可知、,则 , ,所以A、B、C错误,D正确点晴:解决本题的关键知道电源的效率也等于外电压与电动势之比以及会从U-I图象中读出电动势和外电压10.某兴趣小组探究用不同方法测定干电池的电动势和内阻,他们提
10、出的实验方案中有如下四种器材组合为使实验结果尽可能准确,最不可取的一组器材是( )A. 一个安培表、一个伏特表和一个滑动变阻器B. 一个伏特表和多个定值电阻C. 一个安培表和一个电阻箱D. 两个安培表和一个滑动变阻器【答案】D【解析】A中根据闭合回路欧姆定律可得,可测量多组数据列式求解,A正确;B中根据欧姆定律可得,测量多组数据可求解,B正确;C中根据欧姆定律可得,可测量多组数据列式求解,C正确;D中两个安培表和一个滑动变阻器,由于不知道滑动变阻器电阻,故无法测量,D错误;【点睛】对于闭合回路欧姆定律的应用,一定要注意公式形式的变通,如本题中,结合给出的仪器所测量的值,选择或者变通相对应的公式
11、,11.要测绘一个标有“3 V0.6 W”小灯泡的伏安特性曲线,灯泡两端的电压需要由零逐渐增加到3 V,并便于操作已选用的器材有:电池组(电动势为4.5 V,内阻约1 );电流表(量程0250 mA,内阻约5 );电压表(量程为03 V,内阻约3 k);电键一个、导线若干实验中所用的滑动变阻器应选下列中的_(填字母代号)A滑动变阻器(最大阻值20 ,额定电流1 A)B滑动变阻器(最大阻值1750 ,额定电流0.3 A)实验的电路图应选用下列的图_(填字母代号)【答案】 (1). A (2). B【解析】【详解】(1)由于实验要求电压从零调,变阻器应采用分压式接法,应选择阻值小的变阻器以方便调节
12、,所以应选择A;(2)由于待测小灯泡阻值较小,满足,所以电流表应用外接法,又变阻器应采用分压式接法,所以应选择B;【点睛】应明确:当实验要求电流从零调或变阻器的全电阻远小于待测电阻时变阻器应采用分压式接法,应选择阻值小的变阻器以方便调节;当待测电阻满足时,电流表应用外接法,满足时,电流表应用内接法;二、不定项选择题(本题共6小题,每小题6分,共36分。全部选对的得6分,选对但不全的得3分,选错或不选的得0分。)12.如图所示,在外力作用下某质点运动的图象为正弦曲线从图中可以判断A. 在时间内,外力做正功B. 在时间内,外力的功率逐渐增大C. 在时刻,外力的功率最大D. 在时间内,外力做的总功为
13、零【答案】AD【解析】在时间内,由图象可知,物体的速度增大,动能增大,由动能定理知外力做正功,故A正确;速度的图象斜率表示加速度,在时间内,加速度逐渐减小,说明外力逐渐减小由图象可知t=0时刻物体的速度为零,由可知外力的功率为0在时刻速度最大,但外力为0,由可知时刻外力功率也为零,可知外力的功率先增大后减小,故B错误;时刻物体的速度为零,由可知外力的功率为零,故C错误;在时间内物体的动能变化量为零,由动能定理可知外力做的总功为零,故D正确13.我国高铁技术处于世界领先水平和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车假设动车组各车厢质量均相等,动车的额定功率都
14、相同,动车组在水平直轨道上运行过程中阻力与车重成正比某列车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,则该动车组()A. 启动时乘客受到车厢作用力的方向与车运动的方向相反B. 做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为32C. 进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比D. 与改为4节动车带4节拖车的动车组最大速度之比为12【答案】BD【解析】【详解】启动时乘客的加速度的方向与车厢运动的方向是相同的,所以启动时乘客受到车厢作用力的方向与车运动的方向相同,故A错误;设每一节车厢的质量是m,阻力为,做加速运动时,对6、7、8车厢进行受力分析得:,对7
15、、8车厢进行受力分析得:,联立可得:,故B正确;设进站时从关闭发动机到停下来滑行的距离为s,则:,又,可得:,可知进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度的平方成正比,故C错误;设每节动车的功率为P,当只有两节动力车时,最大速率为v,则:,改为4节动车带4节拖车的动车组时,最大速度为,则:,所以,故D正确14.我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落已知探测器的质量约为1.3103kg,地球质量约为月球的81倍,地球半径为月球的3.
16、7倍,地球表面的重力加速度大小约为9.8m/s2。则次探测器()A. 在着陆前瞬间,速度大小约为8.9m/sB. 悬停时受到的反冲作用力约为2103NC. 从离开近月圆轨道到着陆这段时间内,机械能守恒D. 在近月圆轨道上运行线速度小于人造卫星在近地圆轨道上运行的线速度【答案】BD【解析】【详解】A根据万有引力等于重力可得重力加速度地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8m/s2,所以月球表面的重力加速度大小约为根据运动学公式得在着陆前的瞬间,速度大小约故A错误;B登月探测器悬停时,二力平衡F=mg=1.31031.662103N故B正确;C从离开
17、近月圆轨道到着陆这段时间内,有外力做功,机械能不守恒,故C错误;D根据,地球质量约为月球的81倍,地球半径约为月球的3.7倍,所以在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度,故D正确;故选BD【点睛】解答本题要知道除重力以外的力对物体做功等于物体机械能的变化量,月球重力加速度约为地球重力加速度的1/6,关于万有引力的应用中,常用公式是在地球表面重力等于万有引力,卫星绕地球做圆周运动万有引力提供圆周运动向心力.15.如图所示,一电场的电场线分布关于y轴(沿竖直方向)对称,O、M、N是y轴上的三个点,且OM=MNP点在y轴右侧,MPON则A. M点的电势比P点高B. 将负电荷
18、由O点移动到P点,电场力做正功C. M、N两点间的电势差大于O、M两点间的电势D. 在O点静止释放一带正电粒子,该粒子将沿y轴做直线运动【答案】AD【解析】【详解】A过M、P、N做等势线,可得到过P点的等势线通过M、N之间,因顺着电场线电势降低,则有MPN,故A正确B将负电荷由O点移到P点,因UOP0,所以W=-qUOP0,则负电荷电场力做负功,故B错误;C由U=Ed可知,MN间的平均场强小于OM间的平均场强,故MN两点间的电势差小于OM两点间的电势差,C错误;D根据电场线的分布特点会发现,电场线关于y轴两边对称,故y轴上的场强方向在 y轴上,所以在O点静止释放一带正电粒子,其所受电场力沿y轴
19、正方向,则该粒子将沿y轴做直线运动,故D正确;点睛】考点:电场线;电势及电势能电场线密的地方电场的强度大,电场线疏的地方电场的强度小,电场力做正功,电势能减小,电场力做负功,电势能增加16.如图所示,氕核、氘核、氚核三种粒子从同一位置无初速度地飘入电场线水平向右的加速电场,之后进入电场线竖直向下的匀强电场发生偏转,最后打在屏上,整个装置处于真空中,不计粒子重力及其相互作用,那么A. 偏转电场对三种粒子做功一样多B. 三种粒子打到屏上时速度一样大C. 三种粒子运动到屏上所用时间相同D. 三种粒子一定打到屏上的同一位置,【答案】AD【解析】试题分析:带电粒子在加速电场中加速,电场力做功W=E1qd
20、; 由动能定理可知:E1qd=mv2;解得:;粒子在偏转电场中的时间;在偏转电场中的纵向速度纵向位移;即位移与比荷无关,与速度无关;则可三种粒子的偏转位移相同,则偏转电场对三种粒子做功一样多;故A正确,B错误;因三粒子由同一点射入偏转电场,且偏转位移相同,故三个粒子打在屏幕上的位置一定相同;因粒子到屏上的时间与横向速度成反比;因加速后的速度大小不同,故三种粒子运动到屏上所用时间不相同;故C错误,D正确;故选AD考点:带电粒子在匀强电场中的运动【名师点睛】此题考查带电粒子在电场中的偏转,要注意偏转中的运动的合成与分解的正确应用;正确列出对应的表达式,根据表达式再去分析速度、位移及电场力的功17.
21、如图为某磁谱仪部分构件的示意图图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹宇宙射线中有大量的电子、正电子和质子当这些粒子从上部垂直进入磁场时,下列说法正确的是A. 电子与正电子的偏转方向一定不同B. 电子和正电子在磁场中的运动轨迹一定相同C. 仅依据粒子的运动轨迹无法判断此粒子是质子还是正电子D. 粒子的动能越大,它在磁场中运动轨迹的半径越小【答案】AC【解析】【详解】由于电子和正电子带电性相反,若入射速度方向相同时,受力方向相反,则偏转方向一定相反,选项A 正确;由于电子和正电子的入射速度大小未知,根据可知,运动半径不一定相同,选项B错误;虽然质子和正电子带电量及电
22、性相同,但是两者的动量大小未知,根据,则根据运动轨迹无法判断粒子是质子还是正电子,选项C正确;由,则,可知粒子的动能越大,它在磁场中运动轨迹的半径越大,选项D 错误三、计算题(本题包含3个小题,共38分。解答应写出必要的文字说明、方程式和重要的计算步骤。只写出最后答案的不能得分。有数值计算的题, 答案中必须明确写出数值和单位。)18.如图,一长为10cm的金属棒ab用两个完全相同的弹簧水平地悬挂在匀强磁场中;磁场的磁感应强度大小为0.1T,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘,金属棒通过开关与一电动势为12V的电池相连,电路总电阻为2已知开关断开时两弹簧的伸长量均为0.5cm;闭
23、合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3cm,重力加速度大小取10m/s2判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量【答案】【解析】【详解】金属棒通电后,闭合回路电流导体棒受到安培力根据安培定则可判断金属棒受到安培力方向竖直向下开关闭合前开关闭合后19.一质量为8.00104 kg的太空飞船从其飞行轨道返回地面飞船在离地面高度1.60105 m 处以7.5103 m/s的速度进入大气层,逐渐减慢至速度为100 m/s时下落到地面取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8 m/s2(结果保留两位有效数字)(1)分别求出该
24、飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600 m处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%.【答案】(1) (2) 【解析】(1)飞船着地前瞬间的机械能为式中,m和v0分别是飞船的质量和着地前瞬间的速率由式和题给数据得设地面附近的重力加速度大小为g,飞船进入大气层时的机械能为式中,vh是飞船在高度1.6105 m处速度大小由式和题给数据得(2)飞船在高度h=600 m处的机械能为由功能原理得式中,W是飞船从高度600 m处至着地瞬间的过程中克服阻力所做的功由式和题给数据得W=9.7108 J【名师点睛】本
25、题主要考查机械能及动能定理,注意零势面的选择及第(2)问中要求的是克服阻力做功20.如图,在区域I(0xd)和区域II(dx2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面一质量为m、带电荷量q(q0)的粒子a于某时刻从y轴上的P点射入区域I,其速度方向沿x轴正向已知a在离开区域I时,速度方向与x轴正方向的夹角为30;因此,另一质量和电荷量均与a相同的粒子b也从p点沿x轴正向射入区域I,其速度大小是a的1/3不计重力和两粒子之间的相互作用力求(1)粒子a射入区域I时速度的大小;(2)当a离开区域II时,a、b两粒子的y坐标之差【答案】(1) (2)【解析】
26、【详解】(1)设粒子a在内做匀速圆周运动的圆心为C(在y轴上),半径为Ra1,粒子速率为va,运动轨迹与两磁场区域边界的交点为P,如图所示由洛伦兹力公式和牛顿第二定律得qvaB由几何关系得PCPRa1式中,30.可得va(2)设粒子a在内做圆周运动的圆心为Oa,半径为Ra2,射出点为Pa(图中未画出轨迹),POaPa2.由洛伦兹力公式和牛顿第二定律得qva(2B)可得Ra2C、P和Oa三点共线,且由知Oa点必位于xd的平面上,由对称性知,Pa点与P点纵坐标相同,即yPaRa1cosh式中,h是C点的y坐标设b在中运动的轨道半径为Rb1,由洛伦兹力公式和牛顿第二定律得设a到达Pa点时,b位于Pb点,转过的角度为.如果b没有飞出,则式中,t是a在区域中运动的时间,而Ta2Tb1可得30可见,b没有飞出.Pb点的y坐标为yPbRb1cosRa1Rb1h可得,a、b两粒子的y坐标之差为yPayPb