1、专题4.10 函数与导数真题训练第一部分:函数1(2023年新课标全国卷数学真题)若为偶函数,则()AB0CD1【答案】B【分析】根据偶函数性质,利用特殊值法求出值,再检验即可.【详解】因为 为偶函数,则 ,解得,当时,解得或,则其定义域为或,关于原点对称.,故此时为偶函数.故选:B.2(2023年高考全国乙卷数学(理)真题)已知是偶函数,则()ABC1D2【答案】D【分析】根据偶函数的定义运算求解.【详解】因为为偶函数,则,又因为不恒为0,可得,即,则,即,解得.故选:D.3(2023年高考全国甲卷数学(文)真题)已知函数记,则()ABCD【答案】A【分析】利用作差法比较自变量的大小,再根据
2、指数函数的单调性及二次函数的性质判断即可.【详解】令,则开口向下,对称轴为,因为,而,所以,即由二次函数性质知,因为,而,即,所以,综上,又为增函数,故,即.故选:A.4(2022年高考全国乙卷数学(理)真题)已知函数的定义域均为R,且若的图像关于直线对称,则()ABCD【答案】D【分析】根据对称性和已知条件得到,从而得到,然后根据条件得到的值,再由题意得到从而得到的值即可求解.【详解】因为的图像关于直线对称,所以,因为,所以,即,因为,所以,代入得,即,所以,.因为,所以,即,所以.因为,所以,又因为,联立得,所以的图像关于点中心对称,因为函数的定义域为R,所以因为,所以.所以.故选:D【点
3、睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.5(2023年新高考天津数学高考真题)若,则的大小关系为()ABCD【答案】D【分析】根据对应幂、指数函数的单调性判断大小关系即可.【详解】由在R上递增,则,由在上递增,则.所以.故选:D6(2023年新课标全国卷数学真题)设函数在区间上单调递减,则的取值范围是()ABCD【答案】D【分析】利用指数型复合函数单调性,判断列式计算作答.【详解】函数在R上单调递增,而函数在区间上单调递减,则有函数在区间上单调递减,因此,解得,所以的取值范围是.故选:D7(2022年新高考全国
4、II卷数学真题)已知函数的定义域为R,且,则()ABC0D1【答案】A【分析】法一:根据题意赋值即可知函数的一个周期为,求出函数一个周期中的的值,即可解出【详解】方法一:赋值加性质因为,令可得,所以,令可得,即,所以函数为偶函数,令得,即有,从而可知,故,即,所以函数的一个周期为因为,所以一个周期内的由于22除以6余4,所以故选:A方法二:【最优解】构造特殊函数由,联想到余弦函数和差化积公式,可设,则由方法一中知,解得,取,所以,则,所以符合条件,因此的周期,且,所以,由于22除以6余4,所以故选:A【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用
5、熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.8(2022年新高考北京数学高考真题)已知函数,则对任意实数x,有()ABCD【答案】C【分析】直接代入计算,注意通分不要计算错误【详解】,故A错误,C正确;,不是常数,故BD错误;故选:C9(2022年高考全国甲卷数学(文)真题)已知,则()ABCD【答案】A【分析】法一:根据指对互化以及对数函数的单调性即可知,再利用基本不等式,换底公式可得,然后由指数函数的单调性即可解出【详解】方法一:(指对数函数性质)由可得,而,所以,即,所以.又,所以,即,所以.综上,.方法二:【最优解】(构造函数)由,可
6、得根据的形式构造函数 ,则, 令,解得 ,由 知 . 在 上单调递增,所以 ,即 , 又因为 ,所以 .故选:A.【点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用的形式构造函数,根据函数的单调性得出大小关系,简单明了,是该题的最优解10(2022年新高考北京数学高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是下列结论中正确的是()A当,时,二氧化碳处于液态B当,时,二氧化碳处于气态C
7、当,时,二氧化碳处于超临界状态D当,时,二氧化碳处于超临界状态【答案】D【分析】根据与的关系图可得正确的选项.【详解】当,时,此时二氧化碳处于固态,故A错误.当,时,此时二氧化碳处于液态,故B错误.当,时,与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C错误.当,时,因, 故此时二氧化碳处于超临界状态,故D正确.故选:D11(2021年全国新高考II卷数学试题)已知,则下列判断正确的是()ABCD【答案】C【分析】对数函数的单调性可比较、与的大小关系,由此可得出结论.【详解】,即.故选:C.12(2021年全国高考甲卷数学(文)试题)下列函数中是增函数的为()ABCD【答案】D
8、【分析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A,为上的减函数,不合题意,舍.对于B,为上的减函数,不合题意,舍.对于C,在为减函数,不合题意,舍.对于D,为上的增函数,符合题意,故选:D.13(2021年全国新高考II卷数学试题)已知函数的定义域为,为偶函数,为奇函数,则()ABCD【答案】B【分析】推导出函数是以为周期的周期函数,由已知条件得出,结合已知条件可得出结论.【详解】因为函数为偶函数,则,可得,因为函数为奇函数,则,所以,所以,即,故函数是以为周期的周期函数,因为函数为奇函数,则,故,其它三个选项未知.故选:B.14(2021年全国高考甲卷数学(理)试题)设
9、函数的定义域为R,为奇函数,为偶函数,当时,若,则()ABCD【答案】D【分析】通过是奇函数和是偶函数条件,可以确定出函数解析式,进而利用定义或周期性结论,即可得到答案【详解】方法一:因为是奇函数,所以;因为是偶函数,所以令,由得:,由得:,因为,所以,令,由得:,所以思路一:从定义入手所以方法二:因为是奇函数,所以;因为是偶函数,所以令,由得:,由得:,因为,所以,令,由得:,所以思路二:从周期性入手由两个对称性可知,函数的周期所以故选:D【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果15(2021年全国高考乙卷数学(理)试题)设函数,则
10、下列函数中为奇函数的是()ABCD【答案】B【分析】分别求出选项的函数解析式,再利用奇函数的定义即可.【详解】由题意可得,对于A,不是奇函数;对于B,是奇函数;对于C,定义域不关于原点对称,不是奇函数;对于D,定义域不关于原点对称,不是奇函数.故选:B【点睛】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.16(2021年全国高考甲卷数学(文)试题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A1.5B1.2
11、C0.8D0.6【答案】C【分析】根据关系,当时,求出,再用指数表示,即可求解.【详解】由,当时,则.故选:C.17(2021年全国高考甲卷数学(文)试题)设是定义域为R的奇函数,且.若,则()ABCD【答案】C【分析】由题意利用函数的奇偶性和函数的递推关系即可求得的值.【详解】由题意可得:,而,故.故选:C.【点睛】关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.18(2021年全国高考乙卷数学(文)试题)下列函数中最小值为4的是()ABCD【答案】C【分析】根据二次函数的性质可判断选项不符合题意,再根据基本不等式“一正二定三相等”,即可
12、得出不符合题意,符合题意【详解】对于A,当且仅当时取等号,所以其最小值为,A不符合题意;对于B,因为,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;对于C,因为函数定义域为,而,当且仅当,即时取等号,所以其最小值为,C符合题意;对于D,函数定义域为,而且,如当,D不符合题意故选:C【点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出19(2021年全国新高考I卷数学试题)已知函数是偶函数,则_.【答案】1【分析】利用偶函数的定义可求参数的值.【详解】因为,故,因为为偶函数,故,时,整理得到,故,故答案为:120(2023年高
13、考全国甲卷数学(理)真题)若为偶函数,则_【答案】2【分析】利用偶函数的性质得到,从而求得,再检验即可得解.【详解】因为为偶函数,定义域为,所以,即,则,故,此时,所以,又定义域为,故为偶函数,所以.故答案为:2.21(2022年高考全国乙卷数学(文)真题)若是奇函数,则_,_【答案】 ; 【分析】根据奇函数的定义即可求出【详解】方法一:奇函数定义域的对称性若,则的定义域为,不关于原点对称若奇函数的有意义,则且且,函数为奇函数,定义域关于原点对称,解得,由得,故答案为:;方法二:函数的奇偶性求参函数为奇函数 方法三:因为函数为奇函数,所以其定义域关于原点对称由可得,所以,解得:,即函数的定义域
14、为,再由可得,即,在定义域内满足,符合题意故答案为:;第二部分:导数22(2023年新课标全国卷数学真题)已知函数在区间上单调递增,则a的最小值为()ABeCD【答案】C【分析】根据在上恒成立,再根据分参求最值即可求出【详解】依题可知,在上恒成立,显然,所以,设,所以,所以在上单调递增,故,即,即a的最小值为故选:C23(2023年高考全国乙卷数学(文)真题)函数存在3个零点,则的取值范围是()ABCD【答案】B【分析】写出,并求出极值点,转化为极大值大于0且极小值小于0即可.【详解】,则,若要存在3个零点,则要存在极大值和极小值,则,令,解得或,且当时,当,故的极大值为,极小值为,若要存在3
15、个零点,则,即,解得,故选:B.24(2023年高考全国甲卷数学(文)真题)曲线在点处的切线方程为()ABCD【答案】C【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线在点处的切线方程为,因为,所以,所以所以所以曲线在点处的切线方程为.故选:C25(2022年高考全国乙卷数学(文)真题)函数在区间的最小值、最大值分别为()ABCD【答案】D【分析】利用导数求得的单调区间,从而判断出在区间上的最小值和最大值.【详解】,所以在区间和上,即单调递增;在区间上,即单调递减,又,所以在区间上的最小值为,最大值为.故选:D26(2022
16、年高考全国甲卷数学(理)真题)已知,则()ABCD【答案】A【分析】由结合三角函数的性质可得;构造函数,利用导数可得,即可得解.【详解】方法一:构造函数因为当故,故,所以;设,所以在单调递增,故,所以,所以,所以,故选A方法二:不等式放缩因为当,取得:,故,其中,且当时,及此时,故,故所以,所以,故选A方法三:泰勒展开设,则,计算得,故选A.方法四:构造函数因为,因为当,所以,即,所以;设,所以在单调递增,则,所以,所以,所以,故选:A方法五:【最优解】不等式放缩因为,因为当,所以,即,所以;因为当,取得,故,所以故选:A【整体点评】方法4:利用函数的单调性比较大小,是常见思路,难点在于构造合
17、适的函数,属于通性通法;方法5:利用二倍角公式以及不等式放缩,即可得出大小关系,属于最优解27(2022年高考全国甲卷数学(理)真题)当时,函数取得最大值,则()ABCD1【答案】B【分析】根据题意可知,即可解得,再根据即可解出【详解】因为函数定义域为,所以依题可知,而,所以,即,所以,因此函数在上递增,在上递减,时取最大值,满足题意,即有故选:B.28(2022年新高考全国I卷数学真题)ABCD【答案】C【分析】构造函数, 导数判断其单调性,由此确定的大小.【详解】方法一:构造法设,因为,当时,当时,所以函数在单调递减,在上单调递增,所以,所以,故,即,所以,所以,故,所以,故,设,则,令,
18、当时,函数单调递减,当时,函数单调递增,又,所以当时,所以当时,函数单调递增,所以,即,所以故选:C.方法二:比较法解: , , , , 令 则 , 故 在 上单调递减, 可得 ,即 ,所以 ; , 令 则 , 令 ,所以 , 所以 在 上单调递增,可得 ,即 , 所以 在 上单调递增,可得 ,即 ,所以 故 29(2021年全国高考乙卷数学(理)试题)设,则()ABCD【答案】B【分析】利用对数的运算和对数函数的单调性不难对a,b的大小作出判定,对于a与c,b与c的大小关系,将0.01换成x,分别构造函数,,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f(0)=0,g(0)
19、=0即可得出a与c,b与c的大小关系.【详解】方法一:,所以;下面比较与的大小关系.记,则,由于所以当0x0时,所以,即函数在0,+)上单调递减,所以,即,即bc;综上,故选:B.方法二:令,即函数在(1,+)上单调递减令,即函数在(1,3)上单调递增综上,故选:B.【点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.30(2021年全国高考乙卷数学(理)试题)设,若为函数的极大值点,则()ABCD【答案】D【分析】先考虑函数的零点情况,注意零点左右附近函数值是否变
20、号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到所满足的关系,由此确定正确选项.【详解】若,则为单调函数,无极值点,不符合题意,故.有和两个不同零点,且在左右附近是不变号,在左右附近是变号的.依题意,为函数的极大值点,在左右附近都是小于零的.当时,由,画出的图象如下图所示:由图可知,故.当时,由时,画出的图象如下图所示:由图可知,故.综上所述,成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.31(2021年全国新高考I卷数学试题)若过点可以作曲线的两条切线,则()ABCD【答案】D【分析】解法一:根据导数几何意义求得切线方程,再构造函
21、数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线的图象,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.【详解】在曲线上任取一点,对函数求导得,所以,曲线在点处的切线方程为,即,由题意可知,点在直线上,可得,令,则.当时,此时函数单调递增,当时,此时函数单调递减,所以,由题意可知,直线与曲线的图象有两个交点,则,当时,当时,作出函数的图象如下图所示:由图可知,当时,直线与曲线的图象有两个交点.故选:D.解法二:画出函数曲线的图象如图所示,根据直观即可判定点在曲线下方和轴上方时才可以作出两条切线.由此可知.故选:D.【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知
22、识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.32(2023年高考全国乙卷数学(理)真题)设,若函数在上单调递增,则a的取值范围是_.【答案】【分析】原问题等价于恒成立,据此将所得的不等式进行恒等变形,可得,由右侧函数的单调性可得实数的二次不等式,求解二次不等式后可确定实数的取值范围.【详解】由函数的解析式可得在区间上恒成立,则,即在区间上恒成立,故,而,故,故即,故,结合题意可得实数的取值范围是.故答案为:.33(2022年新高考全国I卷数学真题)若曲线有两条过坐标原点的切线,则a的取值范围是_【答案】【分析】
23、设出切点横坐标,利用导数的几何意义求得切线方程,根据切线经过原点得到关于的方程,根据此方程应有两个不同的实数根,求得的取值范围.【详解】,设切点为,则,切线斜率,切线方程为:,切线过原点,,整理得:,切线有两条,,解得或,的取值范围是,故答案为:34(2022年高考全国乙卷数学(理)真题)已知和分别是函数(且)的极小值点和极大值点若,则a的取值范围是_【答案】【分析】法一:依题可知,方程的两个根为,即函数与函数的图象有两个不同的交点,构造函数,利用指数函数的图象和图象变换得到的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.【详解】方法一:【最优解】转化法,零点的问题转
24、为函数图象的交点因为,所以方程的两个根为,即方程的两个根为,即函数与函数的图象有两个不同的交点,因为分别是函数的极小值点和极大值点,所以函数在和上递减,在上递增,所以当时,即图象在上方当时,即图象在下方,图象显然不符合题意,所以令,则,设过原点且与函数的图象相切的直线的切点为,则切线的斜率为,故切线方程为,则有,解得,则切线的斜率为,因为函数与函数的图象有两个不同的交点,所以,解得,又,所以,综上所述,的取值范围为方法二:【通性通法】构造新函数,二次求导=0的两个根为因为分别是函数的极小值点和极大值点,所以函数在和上递减,在上递增,设函数,则,若,则在上单调递增,此时若,则在上单调递减,在上单
25、调递增,此时若有和分别是函数且的极小值点和极大值点,则,不符合题意;若,则在上单调递减,此时若,则在上单调递增,在上单调递减,令,则,此时若有和分别是函数且的极小值点和极大值点,且,则需满足,即故,所以.【整体点评】法一:利用函数的零点与两函数图象交点的关系,由数形结合解出,突出“小题小做”,是该题的最优解;法二:通过构造新函数,多次求导判断单调性,根据极值点的大小关系得出不等式,解出即可,该法属于通性通法35(2021年全国新高考II卷数学试题)已知函数,函数的图象在点和点的两条切线互相垂直,且分别交y轴于M,N两点,则取值范围是_【答案】【分析】结合导数的几何意义可得,结合直线方程及两点间
26、距离公式可得,化简即可得解.【详解】由题意,则,所以点和点,,所以,所以,所以,同理,所以.故答案为:【点睛】关键点点睛:解决本题的关键是利用导数的几何意义转化条件,消去一个变量后,运算即可得解.36(2023年新课标全国卷数学真题)已知函数的定义域为,则()ABC是偶函数D为的极小值点【答案】ABC【分析】方法一:利用赋值法,结合函数奇遇性的判断方法可判断选项ABC,举反例即可排除选项D.方法二:选项ABC的判断与方法一同,对于D,可构造特殊函数进行判断即可.【详解】方法一:因为,对于A,令,故正确.对于B,令,则,故B正确.对于C,令,则,令,又函数的定义域为,所以为偶函数,故正确,对于D
27、,不妨令,显然符合题设条件,此时无极值,故错误.方法二:因为,对于A,令,故正确.对于B,令,则,故B正确.对于C,令,则,令,又函数的定义域为,所以为偶函数,故正确,对于D,当时,对两边同时除以,得到,故可以设,则,当肘,则,令,得;令,得;故在上单调递减,在上单调递增,因为为偶函数,所以在上单调递增,在上单调递减,显然,此时是的极大值,故D错误.故选:.37(2021年全国新高考II卷数学试题)写出一个同时具有下列性质的函数_;当时,;是奇函数【答案】(答案不唯一,均满足)【分析】根据幂函数的性质可得所求的.【详解】取,则,满足,时有,满足,的定义域为,又,故是奇函数,满足.故答案为:(答
28、案不唯一,均满足)38(2021年全国高考甲卷数学(理)试题)曲线在点处的切线方程为_【答案】【分析】先验证点在曲线上,再求导,代入切线方程公式即可【详解】由题,当时,故点在曲线上求导得:,所以故切线方程为故答案为:39(2021年全国新高考I卷数学试题)函数的最小值为_.【答案】1【分析】由解析式知定义域为,讨论、,并结合导数研究的单调性,即可求最小值.【详解】由题设知:定义域为,当时,此时单调递减;当时,有,此时单调递减;当时,有,此时单调递增;又在各分段的界点处连续,综上有:时,单调递减,时,单调递增;故答案为:1.40(2022年新高考全国II卷数学真题)曲线过坐标原点的两条切线的方程
29、为_,_【答案】 【分析】分和两种情况,当时设切点为,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出,即可求出切线方程,当时同理可得;【详解】方法一:化为分段函数,分段求分和两种情况,当时设切点为,求出函数导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出,即可求出切线方程,当时同理可得;解: 因为,当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;故答案为:;方法二:根据函数的对称性,数形结合当时,设切
30、点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;因为是偶函数,图象为:所以当时的切线,只需找到关于y轴的对称直线即可.方法三:因为,当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;故答案为:;.41(2022年新高考全国I卷数学真题)已知函数,则()A有两个极值点B有三个零点C点是曲线的对称中心D直线是曲线的切线【答案】AC【分析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D
31、.【详解】由题,令得或,令得,所以在,上单调递增,上单调递减,所以是极值点,故A正确;因,所以,函数在上有一个零点,当时,即函数在上无零点,综上所述,函数有一个零点,故B错误;令,该函数的定义域为,则是奇函数,是的对称中心,将的图象向上移动一个单位得到的图象,所以点是曲线的对称中心,故C正确;令,可得,又,当切点为时,切线方程为,当切点为时,切线方程为,故D错误.故选:AC.42(2023年新课标全国卷数学真题)若函数既有极大值也有极小值,则()ABCD【答案】BCD【分析】求出函数的导数,由已知可得在上有两个变号零点,转化为一元二次方程有两个不等的正根判断作答.【详解】函数的定义域为,求导得
32、,因为函数既有极大值也有极小值,则函数在上有两个变号零点,而,因此方程有两个不等的正根,于是,即有,显然,即,A错误,BCD正确.故选:BCD43(2022年新高考全国I卷数学真题)已知函数及其导函数的定义域均为,记,若,均为偶函数,则()ABCD【答案】BC【分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】方法一:对称性和周期性的关系研究对于,因为为偶函数,所以即,所以,所以关于对称,则,故C正确;对于,因为为偶函数,所以关于对称,由求导,和,得,所以,所以关于对称,因为其定义域为R,所以,结合关于对称,从而周期,所以,故B正确
33、,D错误;若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.方法二:【最优解】特殊值,构造函数法.由方法一知周期为2,关于对称,故可设,则,显然A,D错误,选BC.故选:BC.方法三:因为,均为偶函数,所以即,所以,则,故C正确;函数,的图象分别关于直线对称,又,且函数可导,所以,所以,所以,所以,故B正确,D错误;若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊
34、函数,再验证选项,简单明了,是该题的最优解44(2022年高考全国甲卷数学(文)真题)已知函数,曲线在点处的切线也是曲线的切线(1)若,求a;(2)求a的取值范围【答案】(1)3(2)【分析】(1)先由上的切点求出切线方程,设出上的切点坐标,由斜率求出切点坐标,再由函数值求出即可;(2)设出上的切点坐标,分别由和及切点表示出切线方程,由切线重合表示出,构造函数,求导求出函数值域,即可求得的取值范围.【详解】(1)由题意知,则在点处的切线方程为,即,设该切线与切于点,则,解得,则,解得;(2),则在点处的切线方程为,整理得,设该切线与切于点,则,则切线方程为,整理得,则,整理得,令,则,令,解得
35、或,令,解得或,则变化时,的变化情况如下表:01000则的值域为,故的取值范围为.45(2022年高考全国乙卷数学(文)真题)已知函数(1)当时,求的最大值;(2)若恰有一个零点,求a的取值范围【答案】(1)(2)【分析】(1)由导数确定函数的单调性,即可得解;(2)求导得,按照、及结合导数讨论函数的单调性,求得函数的极值,即可得解.【详解】(1)当时,则,当时,单调递增;当时,单调递减;所以;(2),则,当时,所以当时,单调递增;当时,单调递减;所以,此时函数无零点,不合题意;当时,在上,单调递增;在上,单调递减;又,由(1)得,即,所以,当时,则存在,使得,所以仅在有唯一零点,符合题意;当
36、时,所以单调递增,又,所以有唯一零点,符合题意;当时,在上,单调递增;在上,单调递减;此时,由(1)得当时,所以,此时存在,使得,所以在有一个零点,在无零点,所以有唯一零点,符合题意;综上,a的取值范围为.【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.46(2023年新课标全国卷数学真题)(1)证明:当时,;(2)已知函数,若是的极大值点,求a的取值范围【答案】(1)证明见详解(2)【分析】(1)分别构建,求导,利用导数判断原函数的单调性,进而可得结果;(2)根据题意结合偶函数的性质可知只需要研究在上的单调性,求导,分类讨论和
37、,结合(1)中的结论放缩,根据极大值的定义分析求解.【详解】(1)构建,则对恒成立,则在上单调递增,可得,所以;构建,则,构建,则对恒成立,则在上单调递增,可得,即对恒成立,则在上单调递增,可得,所以;综上所述:.(2)令,解得,即函数的定义域为,若,则,因为在定义域内单调递减,在上单调递增,在上单调递减,则在上单调递减,在上单调递增,故是的极小值点,不合题意,所以.当时,令因为,且,所以函数在定义域内为偶函数,由题意可得:,(i)当时,取,则,由(1)可得,且,所以,即当时,则在上单调递增,结合偶函数的对称性可知:在上单调递减,所以是的极小值点,不合题意;()当时,取,则,由(1)可得,构建
38、,则,且,则对恒成立,可知在上单调递增,且,所以在内存在唯一的零点,当时,则,且,则,即当时,则在上单调递减,结合偶函数的对称性可知:在上单调递增,所以是的极大值点,符合题意;综上所述:,即,解得或,故a的取值范围为.【点睛】关键点睛:1.当时,利用,换元放缩;2.当时,利用,换元放缩.47(2023年高考全国甲卷数学(理)真题)已知(1)若,讨论的单调性;(2)若恒成立,求a的取值范围【答案】(1)答案见解析.(2)【分析】(1)求导,然后令,讨论导数的符号即可;(2)构造,计算的最大值,然后与0比较大小,得出的分界点,再对讨论即可.【详解】(1)令,则则当当,即.当,即.所以在上单调递增,
39、在上单调递减(2)设设所以.若,即在上单调递减,所以.所以当,符合题意.若当,所以.所以,使得,即,使得.当,即当单调递增.所以当,不合题意.综上,的取值范围为.【点睛】关键点点睛:本题采取了换元,注意复合函数的单调性在定义域内是减函数,若,当,对应当.48(2022年高考全国甲卷数学(理)真题)已知函数(1)若,求a的取值范围;(2)证明:若有两个零点,则【答案】(1)(2)证明见的解析【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为,再利用导数即可得证.【详解】(1)方法一:常规求导的定义域为,则令,得当单调递减当单调递增,若,则,即所以的取值范围为方
40、法二:同构处理由得:令,则即令,则故在区间上是增函数故,即所以的取值范围为(2)方法一:构造函数由题知,一个零点小于1,一个零点大于1,不妨设要证,即证因为,即证又因为,故只需证即证即证下面证明时,设,则设所以,而所以,所以所以在单调递增即,所以令所以在单调递减即,所以;综上, ,所以.方法二:对数平均不等式由题意得:令,则,所以在上单调递增,故只有1个解又因为有两个零点,故两边取对数得:,即又因为,故,即下证因为不妨设,则只需证构造,则故在上单调递减故,即得证【点睛】关键点点睛 :本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式这个函数经常出现,需要掌握49(2023年新课标全国
41、卷数学真题)已知函数(1)讨论的单调性;(2)证明:当时,【答案】(1)答案见解析(2)证明见解析【分析】(1)先求导,再分类讨论与两种情况,结合导数与函数单调性的关系即可得解;(2)方法一:结合(1)中结论,将问题转化为的恒成立问题,构造函数,利用导数证得即可.方法二:构造函数,证得,从而得到,进而将问题转化为的恒成立问题,由此得证.【详解】(1)因为,定义域为,所以,当时,由于,则,故恒成立,所以在上单调递减;当时,令,解得,当时,则在上单调递减;当时,则在上单调递增;综上:当时,在上单调递减;当时,在上单调递减,在上单调递增.(2)方法一:由(1)得,要证,即证,即证恒成立,令,则,令,
42、则;令,则;所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.方法二:令,则,由于在上单调递增,所以在上单调递增,又,所以当时,;当时,;所以在上单调递减,在上单调递增,故,则,当且仅当时,等号成立,因为,当且仅当,即时,等号成立,所以要证,即证,即证,令,则,令,则;令,则;所以在上单调递减,在上单调递增,所以,则恒成立,所以当时,恒成立,证毕.50(2022年高考全国乙卷数学(理)真题)已知函数(1)当时,求曲线在点处的切线方程;(2)若在区间各恰有一个零点,求a的取值范围【答案】(1)(2)【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对分类讨论,对分两部
43、分研究【详解】(1)的定义域为当时,所以切点为,所以切线斜率为2所以曲线在点处的切线方程为(2)设若,当,即所以在上单调递增,故在上没有零点,不合题意若,当,则所以在上单调递增所以,即所以在上单调递增,故在上没有零点,不合题意若(1)当,则,所以在上单调递增所以存在,使得,即当单调递减当单调递增所以当,令则所以在上单调递增,在上单调递减,所以,又,所以在上有唯一零点又没有零点,即在上有唯一零点(2)当设所以在单调递增所以存在,使得当单调递减当单调递增,又所以存在,使得,即当单调递增,当单调递减,当,又,而,所以当所以在上有唯一零点,上无零点即在上有唯一零点所以,符合题意所以若在区间各恰有一个零
44、点,求的取值范围为【点睛】方法点睛:本题的关键是对的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.51(2022年新高考全国I卷数学真题)已知函数和有相同的最小值(1)求a;(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列【答案】(1)(2)见解析【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当时,的解的个数、的解的个数均为2,构建新函数,利用导数可得该函数只有一个零点且可得的大小关系,根据存在直线与曲线、有三个不同的交点可得的取值,再根
45、据两类方程的根的关系可证明三根成等差数列.【详解】(1)的定义域为,而,若,则,此时无最小值,故.的定义域为,而.当时,故在上为减函数,当时,故在上为增函数,故.当时,故在上为减函数,当时,故在上为增函数,故.因为和有相同的最小值,故,整理得到,其中,设,则,故为上的减函数,而,故的唯一解为,故的解为.综上,.(2)方法一:由(1)可得和的最小值为.当时,考虑的解的个数、的解的个数.设,当时,当时,故在上为减函数,在上为增函数,所以,而,设,其中,则,故在上为增函数,故,故,故有两个不同的零点,即的解的个数为2.设,当时,当时,故在上为减函数,在上为增函数,所以,而,有两个不同的零点即的解的个
46、数为2.当,由(1)讨论可得、仅有一个解,当时,由(1)讨论可得、均无根,故若存在直线与曲线、有三个不同的交点,则.设,其中,故,设,则,故在上为增函数,故即,所以,所以在上为增函数,而,故上有且只有一个零点,且:当时,即即,当时,即即,因此若存在直线与曲线、有三个不同的交点,故,此时有两个不同的根,此时有两个不同的根,故,所以即即,故为方程的解,同理也为方程的解又可化为即即,故为方程的解,同理也为方程的解,所以,而,故即.方法二:由知,且在上单调递减,在上单调递增;在上单调递减,在上单调递增,且时,此时,显然与两条曲线和共有0个交点,不符合题意;时,此时,故与两条曲线和共有2个交点,交点的横
47、坐标分别为0和1;时,首先,证明与曲线有2个交点,即证明有2个零点,所以在上单调递减,在上单调递增,又因为,令,则,所以在上存在且只存在1个零点,设为,在上存在且只存在1个零点,设为其次,证明与曲线和有2个交点,即证明有2个零点,所以上单调递减,在上单调递增,又因为,令,则,所以在上存在且只存在1个零点,设为,在上存在且只存在1个零点,设为再次,证明存在b,使得因为,所以,若,则,即,所以只需证明在上有解即可,即在上有零点,因为,所以在上存在零点,取一零点为,令即可,此时取则此时存在直线,其与两条曲线和共有三个不同的交点,最后证明,即从左到右的三个交点的横坐标成等差数列,因为所以,又因为在上单
48、调递减,即,所以,同理,因为,又因为在上单调递增,即,所以,又因为,所以,即直线与两条曲线和从左到右的三个交点的横坐标成等差数列.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.52(2021年全国新高考II卷数学试题)已知函数(1)讨论的单调性;(2)从下面两个条件中选一个,证明:只有一个零点;【答案】(1)答案见解析;(2)证明见解析.【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可;(2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论.【详
49、解】(1)由函数的解析式可得:,当时,若,则单调递减,若,则单调递增;当时,若,则单调递增,若,则单调递减,若,则单调递增;当时,在上单调递增;当时,若,则单调递增,若,则单调递减,若,则单调递增;(2)若选择条件:由于,故,则,而,而函数在区间上单调递增,故函数在区间上有一个零点.,由于,故,结合函数的单调性可知函数在区间上没有零点.综上可得,题中的结论成立.若选择条件:由于,故,则,当时,而函数在区间上单调递增,故函数在区间上有一个零点.当时,构造函数,则,当时,单调递减,当时,单调递增,注意到,故恒成立,从而有:,此时:,当时,取,则,即:,而函数在区间上单调递增,故函数在区间上有一个零
50、点.,由于,故,结合函数的单调性可知函数在区间上没有零点.综上可得,题中的结论成立.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数(3)利用导数求函数的最值(极值),解决生活中的优化问题(4)考查数形结合思想的应用53(2021年全国高考乙卷数学(理)试题)设函数,已知是函数的极值点(1)求a;(2)设函数证明:【答案】(1);(2)证明见详解【分
51、析】(1)由题意求出,由极值点处导数为0即可求解出参数;(2)由(1)得,且,分类讨论和,可等价转化为要证,即证在和上恒成立,结合导数和换元法即可求解【详解】(1)由,又是函数的极值点,所以,解得;(2)方法一:转化为有分母的函数由()知,其定义域为要证,即证,即证()当时,即证令,因为,所以在区间内为增函数,所以()当时,即证,由()分析知在区间内为减函数,所以综合()()有方法二 【最优解】:转化为无分母函数由(1)得,且,当 时,要证, ,即证,化简得;同理,当时,要证, ,即证,化简得;令,再令,则,令,当时,单减,故;当时,单增,故;综上所述,在恒成立.方法三 :利用导数不等式中的常
52、见结论证明令,因为,所以在区间内是增函数,在区间内是减函数,所以,即(当且仅当时取等号)故当且时,且,即,所以()当时,所以,即,所以()当时,同理可证得综合()()得,当且时,即【整体点评】(2)方法一利用不等式的性质分类转化分式不等式:当时,转化为证明,当时,转化为证明,然后构造函数,利用导数研究单调性,进而证得;方法二利用不等式的性质分类讨论分别转化为整式不等式:当时,成立和当时,成立,然后换元构造,利用导数研究单调性进而证得,通性通法,运算简洁,为最优解;方法三先构造函数,利用导数分析单调性,证得常见常用结论(当且仅当时取等号)然后换元得到,分类讨论,利用不等式的基本性质证得要证得不等
53、式,有一定的巧合性.54(2021年全国高考甲卷数学(理)试题)已知且,函数(1)当时,求的单调区间;(2)若曲线与直线有且仅有两个交点,求a的取值范围【答案】(1)上单调递增;上单调递减;(2).【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;(2)方法一:利用指数对数的运算法则,可以将曲线与直线有且仅有两个交点等价转化为方程有两个不同的实数根,即曲线与直线有两个交点,利用导函数研究的单调性,并结合的正负,零点和极限值分析的图象,进而得到,发现这正好是,然后根据的图象和单调性得到的取值范围.【详解】(1)当时,,令得,当时,,当时,,函数在上单调递增
54、;上单调递减;(2)方法一【最优解】:分离参数,设函数,则,令,得,在内,单调递增;在上,单调递减;,又,当趋近于时,趋近于0,所以曲线与直线有且仅有两个交点,即曲线与直线有两个交点的充分必要条件是,这即是,所以的取值范围是.方法二:构造差函数由与直线有且仅有两个交点知,即在区间内有两个解,取对数得方程在区间内有两个解构造函数,求导数得当时,在区间内单调递增,所以,在内最多只有一个零点,不符合题意;当时,令得,当时,;当时,;所以,函数的递增区间为,递减区间为由于,当时,有,即,由函数在内有两个零点知,所以,即构造函数,则,所以的递减区间为,递增区间为,所以,当且仅当时取等号,故的解为且所以,
55、实数a的取值范围为方法三分离法:一曲一直曲线与有且仅有两个交点等价为在区间内有两个不相同的解因为,所以两边取对数得,即,问题等价为与有且仅有两个交点当时,与只有一个交点,不符合题意当时,取上一点在点的切线方程为,即当与为同一直线时有得直线的斜率满足:时,与有且仅有两个交点记,令,有在区间内单调递增;在区间内单调递减;时,最大值为,所当且时有综上所述,实数a的取值范围为方法四:直接法因为,由得当时,在区间内单调递减,不满足题意;当时,由得在区间内单调递增,由得在区间内单调递减因为,且,所以,即,即,两边取对数,得,即令,则,令,则,所以在区间内单调递增,在区间内单调递减,所以,所以,则的解为,所
56、以,即故实数a的范围为【整体点评】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,方法一:将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.方法二:将问题取对,构造差函数,利用导数研究函数的单调性和最值.方法三:将问题取对,分成与两个函数,研究对数函数过原点的切线问题,将切线斜率与一次函数的斜率比较得到结论方法四:直接求导研究极值,单调性,最值,得到结论.55(2021年全国高考乙卷数学(文)试题)已知函数(1)讨论的单调性;(2)求曲线过坐标原点的切线与曲线的公共点的坐标【答案】(1)答案见解析;(
57、2) 和.【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;(2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可求得公共点坐标.【详解】(1)由函数的解析式可得:,导函数的判别式,当时,在R上单调递增,当时,的解为:,当时,单调递增;当时,单调递减;当时,单调递增;综上可得:当时,在R上单调递增,当时,在,上单调递增,在上单调递减. (2)由题意可得:,则切线方程为:,切线过坐标原点,则:,整理可得:,即:,解得:,则,切线方程为:,与联立得,化简得,由于切点的横坐标1必然是该方程的一个根,是的一个因式,该方程可以分解因式为解得
58、,,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和.【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注意单调性研究中对导函数,要依据其零点的不同情况进行分类讨论;再求切线与函数曲线的公共点坐标时,要注意除了已经求出的切点,还可能有另外的公共点(交点),要通过联立方程求解,其中得到三次方程求解时要注意其中有一个实数根是求出的切点的横坐标,这样就容易通过分解因式求另一个根.三次方程时高考压轴题中的常见问题,不必恐惧,一般都能容易找到其中一个根,然后在通过分解因式的方法求其余的根.56(2021年全国新高考I卷数学试题)已知函数.(1)讨论的单调性;(2
59、)设,为两个不相等的正数,且,证明:.【答案】(1)的递增区间为,递减区间为;(2)证明见解析.【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令,命题转换为证明:,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论.【详解】(1)的定义域为由得,当时,;当时;当时,故在区间内为增函数,在区间内为减函数,(2)方法一:等价转化由得,即由,得由(1)不妨设,则,从而,得,令, 则,当时,在区间内为减函数,从而,所以,由(1)得即令,则,当时,在区间内为增函数,从而,所以又由,可得,所以
60、由得方法二【最优解】:变形为,所以令则上式变为,于是命题转换为证明:令,则有,不妨设由(1)知,先证要证:令,则,在区间内单调递增,所以,即再证因为,所以需证令,所以,故在区间内单调递增所以故,即综合可知方法三:比值代换证明同证法2以下证明不妨设,则,由得,要证,只需证,两边取对数得,即,即证记,则.记,则,所以,在区间内单调递减,则,所以在区间内单调递减由得,所以,即方法四:构造函数法由已知得,令,不妨设,所以由()知,只需证证明同证法2再证明令令,则所以,在区间内单调递增因为,所以,即又因为,所以,即因为,所以,即综上,有结论得证【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,
61、其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于的式子,这是本方法证明不等式的关键思想所在.57(2022年新高考全国II卷数学真题)已知函数(1)当时,讨论的单调性;(2)当时,求a的取值范围;(3)设,证明:【答案】(1)的减区间为,增区间为.(2)(3)见解析【分析】(1)求出,讨论其符号后可得的单调性.(2)设,求出,先讨论时题设中的不等
62、式不成立,再就结合放缩法讨论符号,最后就结合放缩法讨论的范围后可得参数的取值范围.(3)由(2)可得对任意的恒成立,从而可得对任意的恒成立,结合裂项相消法可证题设中的不等式.【详解】(1)当时,则,当时,当时,故的减区间为,增区间为.(2)设,则,又,设,则,若,则,因为为连续不间断函数,故存在,使得,总有,故在为增函数,故,故在为增函数,故,与题设矛盾.若,则,下证:对任意,总有成立,证明:设,故,故在上为减函数,故即成立.由上述不等式有,故总成立,即在上为减函数,所以.当时,有,所以在上为减函数,所以.综上,.(3)取,则,总有成立,令,则,故即对任意的恒成立.所以对任意的,有,整理得到:
63、,故,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.58(2023年高考全国乙卷数学(理)真题)已知函数.(1)当时,求曲线在点处的切线方程;(2)是否存在a,b,使得曲线关于直线对称,若存在,求a,b的值,若不存在,说明理由.(3)若在存在极值,求a的取值范围.【答案】(1);(2)存在满足题意,理由见解析.(3).【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得
64、函数的定义域,由函数的定义域可确定实数的值,进一步结合函数的对称性利用特殊值法可得关于实数的方程,解方程可得实数的值,最后检验所得的是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论,和三中情况即可求得实数的取值范围.【详解】(1)当时,则,据此可得,函数在处的切线方程为,即.(2)由函数的解析式可得,函数的定义域满足,即函数的定义域为,定义域关于直线对称,由题意可得,由对称性可知,取可得,即,则,解得,经检验满足题意,故.即存在满足题意.(3)由函数的解析式可得,由在区间存在极值点,则在区间上存在变号零点;令,则,令,在
65、区间存在极值点,等价于在区间上存在变号零点,当时,在区间上单调递减,此时,在区间上无零点,不合题意;当,时,由于,所以在区间上单调递增,所以,在区间上单调递增,所以在区间上无零点,不符合题意;当时,由可得,当时,单调递减,当时,单调递增,故的最小值为,令,则,函数在定义域内单调递增,据此可得恒成立,则,令,则,当时,单调递增,当时,单调递减,故,即(取等条件为),所以,且注意到,根据零点存在性定理可知:在区间上存在唯一零点.当时,单调减,当时,单调递增,所以.令,则,则单调递减,注意到,故当时,从而有,所以,令得,所以,所以函数在区间上存在变号零点,符合题意.综合上面可知:实数得取值范围是.【
66、点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.59(2023年高考全国乙卷数学(文)真题)已知函数(1)当时,求曲线在点处的切线方程(2)若函数在单调递增,求的取值范围【答案】(1);(2).【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的
67、斜率和切点坐标,最后求解切线方程即可;(2)原问题即在区间上恒成立,整理变形可得在区间上恒成立,然后分类讨论三种情况即可求得实数的取值范围.【详解】(1)当时,则,据此可得,所以函数在处的切线方程为,即.(2)由函数的解析式可得,满足题意时在区间上恒成立.令,则,令,原问题等价于在区间上恒成立,则,当时,由于,故,在区间上单调递减,此时,不合题意;令,则,当,时,由于,所以在区间上单调递增,即在区间上单调递增,所以,在区间上单调递增,满足题意.当时,由可得,当时,在区间上单调递减,即单调递减,注意到,故当时,单调递减,由于,故当时,不合题意.综上可知:实数得取值范围是.【点睛】方法点睛:(1)
68、求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)由函数的单调性求参数的取值范围的方法函数在区间上单调,实际上就是在该区间上(或)恒成立函数在区间上存在单调区间,实际上就是(或)在该区间上存在解集60(2023年高考全国甲卷数学(文)真题)已知函数(1)当时,讨论的单调性;(2)若,求的取值范围【答案】(1)在上单调递减(2)【分析】(1)代入后,再对求导,同时利用三角函数的平方关系化简,再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数,从而
69、得到,注意到,从而得到,进而得到,再分类讨论与两种情况即可得解;法二:先化简并判断得恒成立,再分类讨论,与三种情况,利用零点存在定理与隐零点的知识判断得时不满足题意,从而得解.【详解】(1)因为,所以,则,令,由于,所以,所以,因为,所以在上恒成立,所以在上单调递减.(2)法一:构建,则,若,且,则,解得,当时,因为,又,所以,则,所以,满足题意;当时,由于,显然,所以,满足题意;综上所述:若,等价于,所以的取值范围为.法二:因为,因为,所以,故在上恒成立,所以当时,满足题意;当时,由于,显然,所以,满足题意;当时,因为,令,则,注意到,若,则在上单调递增,注意到,所以,即,不满足题意;若,则,所以在上最靠近处必存在零点,使得,此时在上有,所以在上单调递增,则在上有,即,不满足题意;综上:.【点睛】关键点睛:本题方法二第2小问讨论这种情况的关键是,注意到,从而分类讨论在上的正负情况,得到总存在靠近处的一个区间,使得,从而推得存在,由此得解.