1、专题38 分式一、整体代入求值【典例】已知x+yxy,求代数式1x+1y-(1x)(1y)的值【解答】解:x+yxy,1x+1y-(1x)(1y)=y+xxy-(1xy+xy)=x+yxy-1+x+yxy11+00【巩固】先化简,再求值:(x2-3x-1-2)1x-1,其中x满足x22x30【解答】解:原式x2-3x-1-2(x-1)x-1(x1)=x2-3-2x+2x-1(x1)x22x1,x22x30,x22x3,原式312二、利用倒数求值【典例】已知aba+b=1,bcb+c=2,cac+a=3,则c的值等于()A12B125C512D12【解答】解:aba+b=1,bcb+c=2,ca
2、c+a=3,a+bab=1,b+cbc=12,c+aca=13,1b+1a=1,1c+1b=12,1a+1c=13,1c+1b+1a+1c=12+13,1+2c=56,解得c12,故选:D【巩固】已知a,b,c为实数,且aba+b=13,aca+c=12,bcb+c=16,求abca+b+c的值【解答】解:aba+b=13,aca+c=12,bcb+c=16,a+bab=3,a+cac=2,b+cbc=6,1a+1b=3,1a+1c=2,1b+1c=6,1a+1b+1c=112,1a=112-6=-12,1b=112-2=72,1c=112-3=52,a2,b=27,c=25,abca+b+c
3、=423三、借助参数求值【典例】已知a,b,c为非零实数,且a+b+c0,若a+b-cc=a-b+cb=-a+b+ca,则(a+b)(b+c)(c+a)abc等于()A8B4C2D1【解答】解:a+b-cc=a-b+cb=-a+b+ca,a+b-c+a-b+c-a+b+ca+b+c=1=a+b-cc=a-b+cb=-a+b+ca,2ab+c,2ca+b,2ba+c,(a+b)(b+c)(c+a)abc=2c2a2babc=8,故选:A【巩固】已知a,b,c均为非零实数,设k=b+ca=c+ab=a+bc,则k的值为2或1【解答】解:k=b+ca=a+cb=a+bc,akb+c,bka+c,ck
4、a+b,可得(ab)kba,若ab,可得k=b-aa-b=-1,若ab,同理可得bc,ac,abc,k=a+aa=2,综上可得k的值为2或1巩固练习1已知aba+b=115,bcb+c=117,cac+a=116,则abcab+bc+ca的值是()A121B122C123D124【解答】解:aba+b=115,1a+1b=15,bcb+c=117,1b+1c=17;cac+a=116,1a+1c=16,+得,2(1a+1b+1c)48,1a+1b+1c=24,则abcab+bc+ca=1ab+bc+acabc=11c+1a+1b=124,故选:D2当m=-16时,代数式21-5mm2-9-mm
5、2-9mm+3-m-3m+3的值是()A1B-12C12D1【解答】解:21-5mm2-9-mm2-9mm+3-m-3m+3,=21-5mm2-9-m(m+3)(m-3)m+3m-m-3m+3,=21-5mm2-9-1m-3-m-3m+3,=21-5m(m+3)(m-3)-m+3(m+3)(m-3)-(m-3)(m-3)(m+3)(m-3),=21-5m-m-3-m2+6m-9(m+3)(m-3),=9-m2(m+3)(m-3),=9-m2m2-9,1故选:A3已知a,b,c为正实数,x=a2b+3c,y=2b3c+a,z=3ca+2b,则x1+x+y1+y+z1+z的值为()A1B32C2D
6、3【解答】解:当x=a2b+3c,y=2b3c+a,z=3ca+2b时,x1+x+y1+y+z1+z =a2b+3c1+a2b+3c+2b3c+a1+2b3c+a+3ca+2b1+3ca+2b =aa+2b+3c+2ba+2b+3c+3ca+2b+3c =a+2b+3ca+2b+3c 1,故选:A4计算a2-4a(a+1-5a-4a)的结果是()Aa+2a-2Ba-2a+2C(a-2)(a+2)aDa+2a【解答】解:原式=a2-4aa(a+1)-(5a-4)a=(a+2)(a-2)aa2+a-5a+4a =(a+2)(a-2)aa(a-2)2 =a+2a-2,故选:A5设实数a,b,c满足a
7、+b+c3,a2+b2+c24,则b2+c22-a+c2+a22-b+a2+b22-c= 【解答】解:由a2+b2+c24,得到a2+b24c2,b2+c24a2,a2+c24b2,且a+b+c3,代入原式:b2+c22-a+c2+a22-b+a2+b22-c,=4-a22-a+4-b22-b+4-c22-c,2+a+2+b+2+c6+(a+b+c)6+39故答案为:96已知实数a,b,c满足abc1,a+b+c4,aa2-3a+1+bb2-3b+1+cc2-3c+1=49,求a2+b2+c2的值【解答】解:abc1,a+b+c4,a23a+1a23a+abca(a3+bc)a(bcbc+1)
8、a(b1)(c1),aa2-3a+1=aa(b-1)(c-1)=1(b-1)(c-1),同理可得:bb2-3b+1=1(a-1)(c-1),cc2-3c+1=1(a-1)(b-1),又aa2-3a+1+bb2-3b+1+cc2-3c+1=49,1(b-1)(c-1)+1(a-1)(c-1)+1(a-1)(b-1)=49,(a+1)+(b+1)+(c+1)(a+1)(b+1)(c+1)=49,即49(a1)(b1)(c1)(a1)+(b1)+(c1),整理得:49(abcabacbc+a+b+c1)a+b+c3,将abc1,a+b+c4代入得:ab+bc+ac=74,则a2+b2+c2(a+b+
9、c)22(ab+bc+ac)=2527已知实数a,b,c满足a+b+c11,且1a+b+1b+c+1c+a=1317,求ab+c+bc+a+ca+b的值【解答】解a+b+c11,a11(b+c),b11(a+c),c11(a+b),ab+c+bc+a+ca+b=11b+c-b+cb+c+11c+a-c+ac+a+11a+b-a+ba+b =11b+c-1+11c+a-1+11a+b-1=11b+c+11c+a+11a+b-3,1a+b+1b+c+1c+a=1317,原式=1317113=14317-3=92178(1)已知3x=4y-z=5z+x,求5x-yy+2z;(2)化简aa2-4a+2
10、a2-3a-12-a并求值,其中a与2,3构成三角形的三边,且a为整数(选择合适的任意值代入)【解答】解:(1)设3x=4y-z=5z+x=1k,则x3k,yz4k,z+x5k即y6k,z2k,原式=15k-6k6k+4k=9k10k=910;(2)原式=a(a+2)(a-2)a+2a(a-3)+1a-2=1(a-2)(a-3)+1a-2 =1+a-3(a-2)(a-3) =1a-3a与2,3构成三角形的三边,1a5,又a为整数,a30,a2,4当a2时,原式无意义;当a4时,原式19已知:axbycz1,求11+a4+11+b4+11+c4+11+x4+11+y4+11+z4的值【解答】解:
11、根据题意可得x=1a,y=1b,z=1c,11+a4+11+x4=11+a4+11+1a4=11+a4+a4a4+1=1,同理可得:11+b4+11+y4=1;11+c4+11+z4=1,11+a4+11+b4+11+c4+11+x4+11+y4+11+z4=310对于实数a,只有一个实数值x满足等式x+1x-1+x-1x+1+2x+a+2x2-1=0试求所有这样的实数a的值【解答】解:x+1x-1+x-1x+1+2x+a+2x2-1=0,去分母得:(x+1)2+(x1)2+2x+a+20,化简得:2x2+2x+a+40,对于实数a,只有一个实数值x满足方程,当442(a+4)0,且方程的解x1时,能满足题目要求,a3.5,此时方程的解为x=-12,当a3.5时,只有一个实数值x满足等式x+1x-1+x-1x+1+2x+a+2x2-1=0;当442(a+4)0时,方程有两个不相等的实数根,但有一个使分母为0,当x1时,2x2+2x+a+40变为2+2+a+40,a8,当x1时,2x2+2x+a+40变为22+a+40,a4,当a4或8时,只有一个实数值x满足等式x+1x-1+x-1x+1+2x+a+2x2-1=0;