ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:1.08MB ,
资源ID:832736      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-832736-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(专题17 最值问题中的将军饮马模型(原卷版).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

专题17 最值问题中的将军饮马模型(原卷版).docx

1、专题17 最值问题中的将军饮马模型 【模型展示】特点传说亚历山大城有一位精通数学和物理的学者,名叫海伦。一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题。将军每天从军营A出发,先到河边饮(yn)马,然后再去河岸同侧的B地开会,应该怎样走才能使路程最短?从此,这个被称为将军饮马的问题广泛流传。实际问题:应该怎样走才能使路程最短?作图问题:在直线l上求作一点C,使AC+BC最短问题.结论AC+BC最短【模型证明】解决方案(1)现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?连接AB,与直线l相交于一点C.AC+BC最短(两点之间线

2、段最短)(2)现在假设点A,B分别是直线l同侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?作法:(1)作点B 关于直线l 的对称点B;(2)连接AB,与直线l 相交于点C 则点C 即为所求 所作的AC +BC最短吗?请说明理由?【证明】如图,在直线l 上任取一点C(与点C 不重合),连接AC,BC,BC由轴对称的性质知,BC =BC,BC=BCAC +BC= AC +BC = AB,AC+BC= AC+BC在ABC中,ABAC+BC,AC +BCAC+BC即AC +BC 最短【题型演练】一、单选题1如图,正方形ABCD的边长是4,点E是DC上一个点,且DE1,P点在A

3、C上移动,则PEPD的最小值是()A4B4.5C5.5D52如图,正方形ABCD的边长为4,点M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为()A4BCD53如图,矩形中,点是矩形内一动点,且,则的最小值是()ABCD4如图,等边ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是边AC上一点,若AE2,则EMCM的最小值为()AB3C2D45已知线段AB及直线l,在直线上确定一点,使最小,则下图中哪一种作图方法满足条件()ABCD6如图,点M是菱形ABCD的边BC的中点,P为对角线BD上的动点,若AB2,A120,则PMPC的最小值为()A2BCD17如图,在AB

4、C中,AB2,ABC60,ACB45,D是BC的中点,直线l经过点D,AEl,BFl,垂足分别为E,F,则AE+BF的最大值为()AB2C2D38如图,凸四边形中,若点M、N分别为边上的动点,则的周长最小值为()ABC6D3二、填空题9在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为,我们不妨就把这样的矩形称为“标准矩形”,在“标准矩形”中,如图所示,点在上,且,若为边上一动点,当的周长最小时,则的值为_10如图,点是内任意一点,点和点分别是射线和射线上的动点,则周长的最小值是_11如图,等边的边长为4,点是边的中点,点是的中线上的

5、动点,则的最小值是_12如图,正方形ABCD的边长为8,点M在DC上且DM2,N是AC上的一动点,则DNMN的最小值是_13如图所示,在中,直线EF是AB的垂直平分线,D是BC的中点,M是EF上一个动点,的面积为12,则周长的最小值是_14如图,在四边形ABCD中,BCD50,BD90,在BC、CD上分别取一点M、N,使AMN的周长最小,则MAN_15如图,在矩形ABCD中,AB15,BC20,把边AB沿对角线BD平移,点A,B分别对应点A,B给出下列结论:顺次连接点A,B,C,D的图形是平行四边形;点C到它关于直线AA的对称点的距离为50;ACBC的最大值为15;AC+BC的最小值为9其中正

6、确结论的序号是_16如图,O为矩形ABCD对角线AC,BD的交点,AB=8,M,N是直线BC上的动点,且MN=2,则OM+ON的最小值是_17如图,菱形ABCD 的边长为6,ABC120,M是BC边的一个三等分点,P是对角线AC上的动点,当 PBPM 的值最小时,PM的长是_三、解答题18如图,在RtABC中,ACB90,ABC30,AC2,以BC为边向左作等边BCE,点D为AB中点,连接CD,点P、Q分别为CE、CD上的动点(1)求证:ADC为等边三角形;(2)求PD+PQ+QE的最小值19如图,在平面直角坐标系中,直线AB分别与x轴的负半轴、y轴的正半轴交于A、B两点,其中OA2,SABC

7、12,点C在x轴的正半轴上,且OCOB(1)求直线AB的解析式;(2)将直线AB向下平移6个单位长度得到直线l1,直线l1与y轴交于点E,与直线CB交于点D,过点E作y轴的垂线l2,若点P为y轴上一个动点,Q为直线l2上一个动点,求PD+PQ+DQ的最小值;(3)若点M为直线AB上的一点,在y轴上是否存在点N,使以点A、D、M、N为顶点的四边形为平行四边形,若存在,请直接写出点N的坐标;若不存在,请说明理由20如果有一条直线经过三角形的某个顶点,将三角形分成两个三角形,其中一个三角形与原三角形相似,则称该直线为三角形的“自相似分割线”如图1,在ABC中,AB=AC=1,BAC=108,DE垂直

8、平分AB,且交BC于点D,连接AD(1)证明直线AD是ABC的自相似分割线;(2)如图2,点P为直线DE上一点,当点P运动到什么位置时,PA+PC的值最小?求此时PA+PC的长度(3)如图3,射线CF平分ACB,点Q为射线CF上一点,当取最小值时,求QAC的正弦值21在长方形ABCD中,AB4,BC8,点P、Q为BC边上的两个动点(点P位于点Q的左侧,P、Q均不与顶点重合),PQ2(1)如图,若点E为CD边上的中点,当Q移动到BC边上的中点时,求证:APQE;(2)如图,若点E为CD边上的中点,在PQ的移动过程中,若四边形APQE的周长最小时,求BP的长;(3)如图,若M、N分别为AD边和CD边上的两个动点(M、N均不与顶点重合),当BP3,且四边形PQNM的周长最小时,求此时四边形PQNM的面积22在中,D为BC延长线上一点,点E为线段AC,CD的垂直平分线的交点,连接EA,EC,ED(1)如图1,当时,则_;(2)当时,如图2,连接AD,判断的形状,并证明;如图3,直线CF与ED交于点F,满足P为直线CF上一动点当的值最大时,用等式表示PE,PD与AB之间的数量关系为_,并证明23已知如图,在中,点是边上一点,连接,点是上一动点,连接(1)如图1,当时,连接,延长交于点,求证:;(2)如图2,以为直角边作等腰,连接,若,当点在运动过程中,求周长的最小值

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1