1、专题8:相似三角形性质和判定的应用 【典例引领】例:如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点(1)如图1,连接BD,O是对角线BD的中点,连接OE当OE=DE时,求AE的长;(2)如图2,连接BE,EC,过点E作EFEC交AB于点F,连接CF,与BE交于点G当BE平分ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D处,过点D作DNAD于点N,与EH交于点M,且AE=1求SEDMSEMN 的值;连接BE,DMH与CBE是否相似?请说明理由【强化训练】1如图1,以ABCD的较短边CD为一边作菱形CDEF,使
2、点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,如图2,若ADC=60,求DGBH的值;如图3,若ADC=(090),直接写出DGBH的值.(用含的三角函数表示)2已知:ABC是等腰三角形,CA=CB,0ACB90点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AGBC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE(1)如图,当ACB=90时求证:BCMACN;求BDE的度数;(2)当ACB=,其它多件不变时,BDE的度数是 (用含的代数式表示)(3)
3、若ABC是等边三角形,AB=33,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长3如图,ABC中,BAC为钝角,B=45,点P是边BC延长线上一点,以点C为顶点,CP为边,在射线BP下方作PCF=B(1)在射线CF上取点E,连接AE交线段BC于点D如图1,若AD=DE,请直接写出线段AB与CE的数量关系和位置关系;如图2,若AD=DE,判断线段AB与CE的数量关系和位置关系,并说明理由;(2)如图3,反向延长射线CF,交射线BA于点C,将PCF沿CC方向平移,使顶点C落在点C处,记平移后的PCF为PCF,将PCF绕点C顺时针旋转角(045),CF交线段BC于点M,
4、CP交射线BP于点N,请直接写出线段BM,MN与CN之间的数量关系4(2016辽宁省大连市)阅读下面材料:小明遇到这样一个问题:如图1,ABC中,AB=AC,点D在BC边上,DAB=ABD,BEAD,垂足为E,求证:BC=2AE小明经探究发现,过点A作AFBC,垂足为F,得到AFB=BEA,从而可证ABFBAE(如图2),使问题得到解决(1)根据阅读材料回答:ABF与BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,ABC中,AB=AC,BAC=90,D为BC的中点,E为DC的中点,点F在AC的延
5、长线上,且CDF=EAC,若CF=2,求AB的长;(3)如图4,ABC中,AB=AC,BAC=120,点D、E分别在AB、AC边上,且AD=kDB(其中0k33),AED=BCD,求AEEC的值(用含k的式子表示)5我们把两条中线互相垂直的三角形称为“中垂三角形”例如图1,图2,图3中,AF,BE是ABC的中线,AFBE,垂足为P,像ABC这样的三角形均为“中垂三角形”设BCa,ACb,ABc特例探索(1)如图1,当ABE45,c22时,a ,b ;如图2,当ABE30,c4时,a ,b ;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;拓展应用(3)如图4,在ABCD中,点E,F,G分别是AD,BC,CD的中点,BEEG,AD25,AB3求AF的长