1、专练51高考大题专练(五)圆锥曲线的综合运用12022全国甲卷(文),21 设抛物线C:y22px(p0)的焦点为F,点D(p,0),过F的直线交C于M,N两点当直线MD垂直于x轴时,|MF|3.(1)求C的方程;(2)设直线MD,ND与C的另一个交点分别为A,B,记直线MN,AB的倾斜角分别为,.当取得最大值时,求直线AB的方程22021全国甲卷抛物线C的顶点为坐标原点O,焦点在x轴上,直线l:x1交C于P,Q两点, 且OPOQ.已知点M(2,0),且M与l相切(1)求C,M的方程;(2)设A1,A2,A3是C上的三个点,直线A1A2,A1A3均与M相切判断直线A2A3与M的位置关系,并说明
2、理由32021全国乙卷已知抛物线C:y22px(p0)的焦点F到准线的距离为2.(1)求C的方程;(2)已知O为坐标原点,点P在C上,点Q满足9,求直线OQ斜率的最大值42022全国乙卷(文),21已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过A(0,2),B(,1)两点(1)求E的方程;(2)设过点P(1,2)的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点52022江西省宜春市高三模拟已知点T是圆A:(x1)2y280上的动点,点B(1,0),线段BT的垂直平分线交线段AT于点S,记点S的轨迹为曲线C.(1)求曲线C的方程;(2)过B(1,0)作曲线C的两条弦DE,MN,这两条弦的中点分别为P,Q,若0,求BPQ面积的最大值