收藏 分享(赏)

浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx

上传人:高**** 文档编号:826166 上传时间:2024-05-31 格式:DOCX 页数:15 大小:1.48MB
下载 相关 举报
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第1页
第1页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第2页
第2页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第3页
第3页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第4页
第4页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第5页
第5页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第6页
第6页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第7页
第7页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第8页
第8页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第9页
第9页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第10页
第10页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第11页
第11页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第12页
第12页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第13页
第13页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第14页
第14页 / 共15页
浙江省七彩阳光新高考研究联盟2021届高三下学期返校联考数学试卷 WORD版含答案.docx_第15页
第15页 / 共15页
亲,该文档总共15页,全部预览完了,如果喜欢就下载吧!
资源描述

1、绝密考试结束前浙江省“七彩阳光”新高考研究联盟返校联考高三数学学科试题考生须知:1.本试题卷分选择题和非选择题两部分,共4页,满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级姓名考场号座位号及准考证号.3.所有答案必须写在答题卷上,写在试卷上无效.4.考试结束后,只需上交答题卷.如果事件互斥,那么如果事件相互独立,那么如果事件在一次试验中发生的概率是,那么次独立重复试验中事件棱柱的体积公式棱锥的体积公式其中表示棱锥的底面积,表示棱锥的高.棱台的体积公式其中分别表示棱台的上下底面积,表示棱台的高.球的表面积公式其中表示球的半径.球的体积公式,其中表示球的半径.选择题部分(共

2、40分)一选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求1.已知集合,则( )A. B.(0,3) C.(-3,4) D.(-1,4)2.已知是虚数单位,复数的虚部为,则复数的模为( )A. B. C. D.33.已知实满足约束条件,则目标函数的最小值是( )A.-4 B.-1 C. D.-54.已知是不同的直线,是不同的平面,且,则“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.某几何体的三视图如图所示,若棱长为的正方体的外接球表面积为12,则该几何体的体积为( )A. B.10 C. D.6.

3、函数的图像不可能是( )A. B.C. D.7.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为2,则双曲线的焦距的最小值是( )A.16 B.8 C.4 D.28.十三世纪意大利数学家列昂那多.斐波那契从兔子繁殖中发现了“斐波那契数列”,斐波那契数列满足以下关系:,记其前项和为,若为常数,则的值为( )A. B. C. D.9.在正三棱台中,是的中点,设与所成角分别为,则( )A. B.C. D.10.已知实数满足,当取最小值时,的值为( )A. B. C. D.非选择题部分(共110分)二填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.设等差数列的公差

4、为非零常数,且,若成等比数列,则公差_,_.12.圆的半径为_,若其线与圆有公共点,则实数的取值范围是_.13.二项式的展开式中,各项系数和为_,含项的系数是_.14.在中,则_边长的取值范围为_.15.在一个不透明的摸奖箱中有五个分别标有1,2,3,4,5号码的大小相同的小球,现甲乙丙三个人依次参加摸奖活动,规定:每个人连续有放回地摸三次,若得到的三个球编号之和恰为4的倍数,则算作获奖,记获奖的人数为,则的数学期望为_.16.已知函数,若对于任意,均有,则的最大值是_.17.已知,若存在,使得与夹角为,且,则的最小值为_.三解答题:本大题共5小题,共74分解答应写出文字说明证明过程或演算步骤

5、.18.(本题满分14分)已知,是的其中两个零点,且(1)求的单调递增区间;(2)若,求的值.19.(本题满分15分)如图1,在矩形中,是中点,将沿直线翻折到的位置,使得,如图2.(1)求证:面PCE面ABCE;(2)求与面所成角的正弦值.20.(本题满分15分)已知数列的前项和满足(1)求证:数列是等比数列,并求的通项公式;(2)设的前项和为,求证:.21.(本题满分15分)已知椭圆,拋物线,点,斜率为的直线交拋物线于两点,且,经过点的斜率为的直线与椭圆相交于两点.(1)若拋物线的准线经过点,求拋物线的标准方程和焦点坐标:(2)是否存在,使得四边形的面积取得最大值?若存在,请求出这个最大值及

6、的值;若不存在,请说明理由.22.(本题满分15分)已知函数(1)讨论函数在其定义域内的单调性;(2)若对任意的恒成立,设,证明:在上存在唯一的极大值点,且高三数学参考答案一选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.答案:D 2.答案:B 3.答案:A 4.答案:B 5.答案:A6.答案:C 7.答案:C 8.答案:B 9.答案:D 10.答案:A二填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.答案:; 12.答案:; 13.答案:; 14.答案:;15.答案: 16.答案: 17.答案:三解答题:本大题共5小

7、题,共74分.解答应写出文字说明证明过程或演算步骤.18.(本题满分14分)解:(1)是函数的两个零点,即是方程的两个实根,且令得的单调递增区间为(2).19.(本题满分15分)法1证明:由图1可得在图2中又面PEC面ABCE面PCE面ABCE法2:证明:取中点由得又则故又面ABCE面PCE面ABCE(1)法1:由中点得,又由(1)的法2可得,面设C到面的距离为又所以直线与面所成角的正弦值为法2:以点为原点,分别以直线为轴,轴,以经过点且垂直于平面的直线为轴建立直角坐标系.由题意可知,设面的法向量为则令得所以所以直线与面所成角的正弦值为法3:证:面PMN面PAB面PMN交于,作面PAB由相似计

8、算得面PAB,到面的距离=到面的距离又是中点,记为到面的距离到面的距离的2倍又所以直线与面所成角的正弦值为20.(本题满分15分)解:(1)当时,时.两式相减,得则为常数数列是等比数列,首项为,(2)又当时又故21.(本题满分15分)解:(1)抛物线的准线方程焦点坐标,则抛物线的标准方程为焦点(1,0)(2)设由得点在直线上,且且四边形的面积.由得则因为所以由的斜率分别为由图知必过点(3,0)可设且故直线令则直线代入椭圆方程,得点到的距离,四边形的面积当且仅当时面积最小为22.(本题满分15分)解:(1)由题意定义域为令则当时,当时,在上单调递减,在上单调递增即在和上均大于零在上单调递增,在上单调递增(2)易知,由对任意的恒成立,且,则(也可利用的几何意义或分离参数求解)此时令则当时,当时,在上单调递减,在上单调递增又存在唯一实数使得在上递增,上递减,上递增在上唯一的极大值点,即为

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3