1、高考资源网() 您身边的高考专家计时双基练三十二数列求和A组基础必做1已知an是首项为1的等比数列,Sn是an的前n项和,且9S3S6,则数列的前5项和为()A.或5 B.或5C. D.解析设an的公比为q,显然q1,由题意得,所以1q39,得q2,所以是首项为1,公比为的等比数列,前5项和为。答案C2若数列an的通项公式是an(1)n(3n2),则a1a2a10()A15 B12C12 D15解析记bn3n2,则数列bn是以1为首项,3为公差的等差数列,所以a1a2a9a10(b1)b2(b9)b10(b2b1)(b4b3)(b10b9)5d5315。答案A3已知数列an:,若bn,那么数列
2、bn的前n项和Sn为()A. B.C. D.解析an,bn4,Sn44。答案B4已知数列an满足an1,且a1,则该数列的前2 016项的和等于()A1 509 B3 018C1 512 D2 016解析因为a1,又an1,所以a21,从而a3,a41,即得an故数列的前2 016项的和等于S2 0161 0081 512。答案C5已知数列an的前n项和Snn26n,则|an|的前n项和Tn()A6nn2 Bn26n18C. D.解析由Snn26n得数列an是等差数列,且首项为5,公差为2。an5(n1)22n7,n3时,an3时,an0,Tn答案C6数列1,12,124,12222n1,的前
3、n项和Sn1 020,那么n的最小值是()A7 B8C9 D10解析an12222n12n1。Sn(211)(221)(2n1)(21222n)n2n1n2。S91 0131 020。Sn1 020,n的最小值是10。答案D7已知数列an的前n项和为Sn,且ann2n,则Sn_。解析Sn12222323n2n,2Sn122223(n1)2nn2n1,得Sn222232nn2n1n2n12n1n2n12,Sn(n1)2n12。答案(n1)2n128设f(x),若Sfff,则S_。解析f(x),f(1x),f(x)f(1x)1。Sfff,Sfff,得,2S2 015,S1 007.5答案1 007
4、.59对于数列an,定义数列an1an为数列an的“差数列”,若a12,an的“差数列”的通项公式为2n,则数列an的前n项和Sn_。解析an1an2n,an(anan1)(an1an2)(a2a1)a12n12n2222222n222n。Sn2n12。答案2n1210(20152016学年度上学期衡水中学高三年级期中考试)正项数列an的前n项和为Sn,且Sn2(nN*)。(1)证明数列an为等差数列并求其通项公式;(2)设cn,数列cn的前n项和为Tn,证明:Tn0,anan12。数列an是等差数列,其中a11,an2n1。(2)cn,Tn,又Tn是单调递增数列,TnT1,Tn。11数列an
5、满足a11,nan1(n1)ann(n1),nN。(1)证明:数列是等差数列;(2)设bn3n,求数列bn的前n项和Sn。解(1)证明:由已知可得1,即1。所以数列是以1为首项,1为公差的等差数列。(2)由(1)得1(n1)1n,所以ann2。从而bnn3n。Sn131232333n3n,3Sn132233(n1)3nn3n1。得,2Sn31323nn3n1n3n1,所以Sn。B组培优演练1设bn(其中an2n1),数列bn的前n项和为Tn,则T5()A. B.C. D.解析bn,所以Tn,所以T5。答案C2(2016长沙模拟)已知函数f(n)n2cos(n),且anf(n)f(n1),则a1
6、a2a3a100()A100 B0C100 D10 200解析若n为偶数,则anf(n)f(n1)n2(n1)2(2n1),为首项为a25,公差为4的等差数列;若n为奇数,则anf(n)f(n1)n2(n1)22n1,为首项为a13,公差为4的等差数列。所以a1a2a3a100(a1a3a99)(a2a4a100)503450(5)4100。答案A3对于每一个正整数n,设曲线yxn1在点(1,1)处的切线与x轴的交点的横坐标为xn,令anln xn,则a1a2a99_。解析对yxn1求导得y(n1)xn,则曲线在点(1,1)处的切线方程为y1(n1)(x1),令y0,得xn,则anlg xnl
7、g ,所以a1a2a99lglg 2。答案24已知数列an的前n项和为Sn3n,数列bn满足b11,bn1bn(2n1)(nN)。(1)求数列an的通项公式an;(2)求数列bn的通项公式bn;(3)若cn,求数列cn的前n项和Tn。解(1)Sn3n,Sn13n1(n2),anSnSn13n3n123n1(n2)。当n1时,23112S1a13,an(2)bn1bn(2n1),b2b11,b3b23,b4b35,bnbn12n3。以上各式相加得bnb1135(2n3)(n1)2。b11,bnn22n。(3)由题意得cn当n2时,Tn32031213222332(n2)3n1,3Tn92032213322342(n2)3n,相减得2Tn623223323n12(n2)3n。Tn(n2)3n(332333n1)(n2)3n。Tn高考资源网版权所有,侵权必究!