1、数论-整除-整除的基本概念-1星题课程目标知识点考试要求具体要求考察频率整除的基本概念A1、了解整除的定义。2、会判定一个数能不能被另一个数整除。少考知识提要整除的基本概念 定义如果整数 a 除以整数 b(b 0),除得的商是整数且没有余数,我们就说a 能被b 整除,也可以说b 能整除 a ,记作 ba 注意:如果除得的结果有余数,我们就说 a 不能被b 整除,也可以说b 不能整除a 整除的性质性质1:如果 a、b 都能被c 整除,那么它们的和与差也能被c 整除。性质2:如果b 与c 的积能整除a ,那么b与c都能整除a 。性质3:如果b 、c 都能整除a ,且b 和c 互质,那么b 与c 的
2、积能整除a 。性质4:如果c 能整除b ,b 能整除a ,那么c 能整除a 。精选例题整除的基本概念 1. 再过 12 天就到 2016 年了,昊昊感慨地说:我到目前只经过 2 个闰年,并且我出生的年份是 9 的倍数,那么 2016 年昊昊是 岁【答案】9【分析】根据题意“我到目前只经过 2 个闰年”可得我的出生年份在 20052008, 这之间只有 2007 是 9 的倍数,则昊昊是 2007 年出生,则 2016 年昊昊是 2016-2007=9岁. 2. 若六位数 201ab7 能被 11 和 13 整除,则两位数 ab= 【答案】48【分析】由 11 的整除特征可知:(7+a+0)-(
3、2+1+b)=a+4-b=0或11,若a+4-b=11,a-b=7,只有8-1=9-2=7,六位数 201817、201927 都不能被 13 整除若a+4-b=0,则a+4=b,只有 0+4=4,1+4=5,2+4=6,3+4=7,4+4=8,5+4=9 等情况,构成的六位数 201047,201157,201267,201377,201487,201597 中只有 201487 能被 13 整除,则 ab=48 3. 一个电子钟表上总把日期显示为八位数,如 2011 年 1 月 1 日显示为 20110101如果 2011 年最后一个能被 101 整除的日子是 2011ABCD,那么 2011ABCD 是多少?【答案】20111221【分析】试除法得出答案:20111231101=19912110,31-10=21,所以 ABCD=1221 4. 若 4b+2c+d=32,试问 abcd 能否被 8 整除?请说明理由【答案】见解析【分析】由能被 8 整除的特征知,只要后三位数能被 8 整除即可bcd=100b+10c+d,有 bcd-(4b+2c+d)=96b+8c=8(12b+c) 能被 8 整除,而 4b+2c+d=32 也能被 8 整除,所以 abcd 能被 8 整除