收藏 分享(赏)

【技巧归纳 能力拓展】专项突破三 概率与统计(考点1 回归分析与独立性检验)(原卷版).docx

上传人:a**** 文档编号:805250 上传时间:2025-12-15 格式:DOCX 页数:9 大小:68.89KB
下载 相关 举报
【技巧归纳 能力拓展】专项突破三 概率与统计(考点1 回归分析与独立性检验)(原卷版).docx_第1页
第1页 / 共9页
【技巧归纳 能力拓展】专项突破三 概率与统计(考点1 回归分析与独立性检验)(原卷版).docx_第2页
第2页 / 共9页
【技巧归纳 能力拓展】专项突破三 概率与统计(考点1 回归分析与独立性检验)(原卷版).docx_第3页
第3页 / 共9页
【技巧归纳 能力拓展】专项突破三 概率与统计(考点1 回归分析与独立性检验)(原卷版).docx_第4页
第4页 / 共9页
【技巧归纳 能力拓展】专项突破三 概率与统计(考点1 回归分析与独立性检验)(原卷版).docx_第5页
第5页 / 共9页
【技巧归纳 能力拓展】专项突破三 概率与统计(考点1 回归分析与独立性检验)(原卷版).docx_第6页
第6页 / 共9页
【技巧归纳 能力拓展】专项突破三 概率与统计(考点1 回归分析与独立性检验)(原卷版).docx_第7页
第7页 / 共9页
【技巧归纳 能力拓展】专项突破三 概率与统计(考点1 回归分析与独立性检验)(原卷版).docx_第8页
第8页 / 共9页
【技巧归纳 能力拓展】专项突破三 概率与统计(考点1 回归分析与独立性检验)(原卷版).docx_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专项三 概率与统计考点1 回归分析与独立性检验大题 拆解技巧【母题】(2021年全国甲卷)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).P(K2k)0.0500.0100.001k3.8416.63510.828【拆解1

2、】题目条件不变,甲机床、乙机床生产的产品中一级品的频率分别是多少?【拆解2】题目条件不变,能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2k)0.0500.0100.001k3.8416.63510.828小做 变式训练某高科技研发公司生产某种过滤材料,该过滤材料主要质量指标是对直径为0.075 um0.020 um的漂浮固体颗粒的过滤效率达到0.95以上.当前该过滤材料供应紧缺,该公司要扩大产能,在原来A生产线的基础上,增设B生产线,为了监控该过滤材料生产线的生产过程,检验员

3、每天需要从两条生产线上分别随机抽取该过滤材料检测过滤效率.公司规定过滤效率大于0.970的产品为一等品,并根据检验员抽测产品中一等品的数量对两条生产线进行评价.下面是检验员某一天抽取的20个该过滤材料的过滤效率值:序号12345678910过滤效率0.9580.9670.9640.9760.9560.9730.9650.9680.9720.973A生产线过滤效率B生产线过滤效率序号12345678910过滤效率0.9780.9820.9740.9660.9760.9820.9770.9740.9760.972 (1)根据检验员抽测的数据,完成下面的22列联表,并判断是否有95%的把握认为生产线

4、与所生产的产品为一等品有关.生产线产品是一等品产品不是一等品总计AB总计(2)在这20件产品中,从A,B两条生产线生产的产品中各随机抽取1件,求恰有一件为一等品的概率.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2k0)0.0500.0100.001k03.8416.63510.828【拆解1】题目条件不变,根据检验员抽测的数据,完成下面的22列联表.生产线产品是一等品产品不是一等品总计AB总计【拆解2】已知条件不变,根据上问的22列联表,判断是否有95%的把握认为生产线与所生产的产品为一等品有关.附:K2=n(ad-bc)2(a+b)(

5、c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2k0)0.0500.0100.001k03.8416.63510.828【拆解3】已知条件不变,在这20件产品中,从A,B两条生产线生产的产品中各随机抽取1件,求恰有一件为一等品的概率.通法 技巧归纳1.在22列联表中,如果两个变量没有关系,那么应满足ad-bc0.|ad-bc|越小,说明两个变量之间关系越弱;|ad-bc|越大,说明两个变量之间关系越强.2.解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论.独立性检验的一般步骤:(1)根据样本数据制成22列联表;(2)根据公式K2=n(ad-bc)2(a+b)(a+c)

6、(b+d)(c+d),其中n=a+b+c+d,计算K2的观测值k;(3)比较观测值k与参考临界值的大小关系,做统计推断.突破 实战训练1.2021年2月25日举行的全国脱贫攻坚总结表彰大会上,国家电网共有23名(个)先进个人、先进集体获得表彰.其中,国网西藏电力有限公司农电工作部从习近平总书记手中接过了“全国脱贫攻坚楷模”奖牌.过去8年,在党中央坚强领导下,经过世界规模最大、力度最强的脱贫攻坚战,近1亿人摆脱绝对贫困.长期以来,贫困地区的农产品面临“种得出、卖不出”“酒香也怕巷子深”的困境.深谙互联网思维的国家电网人,搭平台、建渠道,以一款APP让众多贫困地区的产品销售易如反掌.2020年“6

7、.18”期间,带货主播和直播运营两大岗位高达去年同期的11.6倍.针对这一市场现象,为了加强监管,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出100次成功交易,并对其评价进行统计,对商品的好评率为0.6,对商品和服务都做出好评的交易为40次,对商品和服务都不满意的交易为5次.(1)完成关于商品和服务评价的22列联表.对服务好评对服务不满意合计对商品好评40对商品不满意5合计100(2)判断能否在犯错误的概率不超过0.025的前提下,认为商品好评与服务好评有关.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.P(K2k)0.150

8、.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.8282.为弘扬劳动精神,让学生树立“劳动最美,劳动最光荣”的观念,某校持续开展“家庭劳动大比拼”活动.某班统计了本班同学17月份的人均月劳动时间(单位:小时),并建立了人均月劳动时间y关于月份x的线性回归方程y=bx+4,y与x的原始数据如下表所示:月份x1234567人均月劳动时间y89m12n1922由于某些原因导致部分数据丢失,但已知i=17xiyi=452.(1)求m,n的值;(2)求该班6月份人均月劳动时间数据的残差值(残差即样本数据与预测值之差).参考公式:在

9、线性回归方程y=bx+a中,b=i=1nxiyi-nxyi=1n(xi-x)2,a=y-bx.3.“一本书,一条街,一教堂,一条江”曾是哈尔滨的城市名片,而现在“哈马”又成为了哈尔滨的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在哈尔滨,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人数逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到下表:平均每周进行长跑训练的天数不大于2天3天或4天不少于5天人数3013040若某人平均每周进行长跑训练天数不少于5天,则称其

10、为“热烈参与者”,否则称为“非热烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;(2)根据上表的数据,填写下列22列联表,并通过计算判断是否有99%的把握认为是否热烈参与马拉松与性别有关.热烈参与者非热烈参与者合计男140女55合计参考公式及数据:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.8284.近几年,快递业的迅速发展导致行业内竞争日趋激烈.某快递网点需了解

11、一天中收发一件快递的平均成本y(单位:元)与当天揽收的快递件数x(单位:千件)之间的关系,对该网点近5天的每日揽件量xi(单位:千件)与当日收发一件快递的平均成本yi(单位;元)(i=1,2,3,4,5)数据进行了初步处理,得到下面的散点图及一些统计量的值.xywi=15(xi-x)(yi-y)i=15(wi-w)(yi-y)i=15(xi-x)2i=15(wi-w)245.160.415-13.22.028300.507表中wi=1xi,w=15i=15wi.(1)根据散点图,判断y=a+bx与y=c+dx哪一个适宜作为y关于x的回归方程类型,并根据判断结果及表中数据求出y关于x的回归方程.

12、(2)各快递业为提高快递揽收量,实现总利润的增长,除了提升服务质量、提高时效保障外,价格优惠也是重要策略之一.已知该网点每天揽收快递的件数x(单位:千件)与单件快递的平均价格t(单位:元)之间的关系是x=25-2t(5t12),收发一件快递的利润等于单件快递的平均价格减去平均成本,根据(1)中建立的回归方程解决以下问题:预测该网点某天揽收2000件快递可获得的总利润.单件快递的平均价格t为何值时,该网点一天内收发快递所获利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),(un,vn),其回归直线v=+u的斜率、截距的最小二乘估计分别为=i=1n(ui-u)(vi-v)i=1n(

13、ui-u )2,=v -u .5.马拉松(Marathon)长跑是国际上非常普及的长跑比赛项目,分全程马拉松(Full Marathon)、半程马拉松(Half Marathon)和四分马拉松(Quarter Marathon)三种.以全程马拉松比赛最为普及,一般提及马拉松,即指全程马拉松.2021年沈阳国际马拉松将于9月19日在辽宁沈阳举行,本次“沈马”获评“2021世界田联标牌”赛事.为了调查学生喜欢跑步是否与性别有关,某高中选取了200名学生进行了问卷调查,得到如下的22列联表:喜欢跑步不喜欢跑步总计男生80女生20总计已知在这200名学生中随机抽取1人,抽到喜欢跑步的概率为0.6.(1

14、)判断是否有90%的把握认为喜欢跑步与性别有关;(2)从上述不喜欢跑步的学生中按性别分层抽样的方法抽取8名学生,再在这8人中抽取3人调查其喜欢的运动,用X表示3人中女生的人数,求X的分布列及数学期望.参考公式及数据:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2k0)0.500.400.250.150.100.050.0250.010.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.8286. 某电器公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行

15、了统计,结果如表所示:年份2020年2021年月份9月10月11月12月1月2月月份代码x123456市场占有率y(%)111316152021(1)用相关系数说明月度市场占有率y与月份代码x之间的关系是否可用线性回归模型拟合.(2)求y关于x的线性回归方程,并预测何时该种产品的市场占有率超过30%.(3)根据市场供需情况统计,得到该公司产品2020年的平均月产量X(单位:万件)的分布列为X11.2P0.60.42020年的该公司产品的平均市场价格Y(单位:万元/件)对应的概率分布为P(Y)=0.8,Y=0.3,0.2,Y=0.35.假设每月生产产品的固定成本为200万元,求该产品平均每月利润

16、的分布列和数学期望.参考数据:i=16(xi-x)2=17.5,i=16(xi-x)(yi-y)=35,133036.5.参考公式:相关系数r=i=1nxiyi-nxy(i=1nxi2-nx2)(i=1nyi2-ny2)=i=1n(xi-x)(yi-y)i=1n(xi-x)2i=1n(yi-y)2,回归直线y=bx+a的斜率、截距的最小二乘估计分别为b=i=1nxiyi-nx yi=1nxi2-nx2,a=y-b x.7.随着互联网的兴起,越来越多的人选择网上购物.某购物平台为了吸引顾客,提升销售额,每年“双十一”都会进行某种商品的促销活动.该商品促销活动规则如下:“价由客定”,即所有参与该商

17、品促销活动的人进行网络报价,每个人并不知晓其他人的报价,也不知道参与该商品促销活动的总人数;报价时间截止后,系统根据当年“双十一”该商品数量配额,按照参与该商品促销活动人员的报价从高到低分配名额;每人限购一件,且参与人员分配到名额时必须购买.某位顾客拟参加2019年“双十一”该商品促销活动,他为了预测该商品的最低成交价,根据该购物平台的公告,统计了最近5年“双十一”参与该商品促销活动的人数(见下表).年份20142015201620172018年份编号t12345参与人数(百万人)0.50.611.41.7(1)由收集数据的散点图发现,可用线性回归模型拟合参与人数y(百万人)与年份编号t之间的

18、相关关系.请用最小二乘法求y关于t的线性回归方程y=bt+a,并预测2019年“双十一”参与该商品促销活动的人数.(2)该购物平台调研部门对2000位拟参与2019年“双十一”该商品促销活动人员的报价进行了一个调查,得到如下的一份频数表:报价区间(千元)1,2)2,3)3,4)4,5)5,6)6,7)频数200600600300200100求这2000位参与人员报价X的平均值x和样本方差s2(同一区间的报价可用该价格区间的中点值代替);假设所有参与该商品促销活动人员的报价X可视为服从正态分布N(,2),且和2可分别由中所求的样本平均值x和样本方差s2估值.若预计2019年“双十一”该商品最终销

19、售量为317300,请你合理预测(需说明理由)该商品的最低成交价.参考公式及数据:回归方程y=bt+a,其中b=􀰐i=1ntiyi-nty􀰐i=1nti2-nt2,a=y-bt;􀰐i=15ti2=55,􀰐i=15tiyi=18.8,1.71.3.若随机变量X服从正态分布N(,2),则P(-X+)=0.6827,P(-2X+2)=0.9545,P(-3X+3)=0.9973.8.近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2018年成交的二手车在交易前的使用时间(以下简称“使用时间”)进行

20、统计,得到频率分布直方图如图.(1)记“在2018年成交的二手车中随机选取一辆,该车的使用时间在(8,16年”为事件A,试估计A的概率;(2)根据该汽车交易市场的历史资料,得到散点图如图,其中x(单位:年)表示二手车的使用时间,y(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用y=ea+bx作为二手车平均交易价格y关于其使用年限x的回归方程,相关数据如下表(表中Yi=ln yi,Y=110􀰐i=110Yi):xyY􀰐i=110xiyi􀰐i=110xiYi􀰐i=110xi25.58.71.9301.479.

21、75385(i)根据回归方程类型及表中数据,建立y关于x的回归方程;(ii)该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格4%的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格10%的佣金.在图对二手车使用时间的分组中,以各组的区间中点值代表该组的值.若以2018年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.参考公式:回归方程y=bx+a,其中b=􀰐i=1nxiyi-nxy􀰐i=1nxi2-nx2,a=y-bx.参考数据:e2.9519.1,e1.755.75,e0.551.73,e-0.650.52,e-1.850.16.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1