ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:412KB ,
资源ID:804569      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-804569-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(江苏省张家港市崇真中学2017届高三数学一轮复习导学案:8 函数的奇偶性与对称性 .doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

江苏省张家港市崇真中学2017届高三数学一轮复习导学案:8 函数的奇偶性与对称性 .doc

1、学案8 函数的奇偶性与对称性一、课前准备:【自主梳理】1.奇偶函数的定义:一般地,对于函数的定义域内的_一个,都有_,那么就叫做奇函数对于函数的定义域的_一个,都有_,那么就叫做偶函数2奇偶函数的性质:具有奇偶性的函数,其定义域关于 对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于_对称(2)一个函数是奇函数的充要条件是它的图像关于_对称;一个函数是偶函数的充要条件是它的图像关于_对称(3)若奇函数的定义域包含0,则_(4)定义在上的任意函数都可以表示成一个奇函数_和一个偶函数_的和(5)在定义域的公共部分内,两个奇函数之积(商)为_;两个偶函数之积(商)为_;一奇一偶函数之积(商

2、)为_(注:取商时应使分母不为0)3函数图像的对称性:(1)定义在上的函数满足,则的图像关于_对称 (2)定义在上的函数满足,则的图像关于_对称 【自我检测】1对于定义在R上的函数,下列判断正确的是_ 若,则函数是偶函数;若,则函数不是偶函数;若,则函数不是奇函数2给出4个函数:;其中 是奇函数; 是偶函数; 既不是奇函数也不是偶函数3.已知为奇函数,则_,_4.函数的图像关于点_对称5.函数,若,则的值为_6.已知函数是定义在的奇函数,则函数的奇偶性是_二、课堂活动:【例1】填空题:(1)函数是_函数(填奇偶性)(2)已知函数,其定义域为,则为偶函数的充要条件为_(3)已知是R上的奇函数,且

3、当时,则的解析式为_(4)若函数是奇函数,则_【例2】判断下列各函数的奇偶性:(1);(2);(3)【例3】(1)已知函数是偶函数,当时,又的图象关于直线对称,求在上的解析式;(2)若函数是偶函数,定义域为且在区间上为增函数,解关于不等式课堂小结三、课后作业1.下列函数中,是偶函数的是_. 2.若函数是奇函数,则实数 .3.奇函数的定义域是,当时,则在上的表达式为_.4.已知是偶函数,是奇函数,若,则的解析式是_.5.若函数是偶函数,且它的值域为,则该函数的解析式为_.6.若函数是定义在上的奇函数,且在上为减函数,若,则实数a的取值范围为_.7.若奇函数满足则_.8.已知是定义在上的偶函数,并

4、满足,当时,则的值为_.9.函数是奇函数,且当时是增函数,若,求不等式的解集.10.已知函数对一切,都有.(1)求证:是奇函数; (2)若,用表示.四、纠错分析错题卡题 号错题 原 因 分 析函数的奇偶性与对称性答案一、课前准备:【自主梳理】1.任意,任意,.2.(1)原点,原点.(2)原点,轴.(3)0.(4),.(5)偶函数,偶函数,奇函数.3.(1)直线.(2)点.【自我检测】1.2.,.3. .4. .5.0.6.奇函数.二、课堂活动:【例1】(1)偶.(2).(3).(4)1.【例2】【解析】(1)由,得定义域为,关于原点不对称,为非奇非偶函数(2)由得定义域为, 为偶函数(3)当时,则,当时,则,综上所述,对任意的,都有,为奇函数【例3】【解析】(1)的图象关于直线对称,即当时,又为偶函数,时,(2)函数是偶函数,定义域为且在区间上为增函数,在上为减函数.由得:,即:或,又,即不等式的解为:三、课后作业1.2. 函数是实数R上的奇函数 3. 4. 5. 6. 7. 8.2.5【解析】9.【解析】 ,解之得,所以不等式的解集为.10. 【解析】(1)显然的定义域是,它关于原点对称在中,令,得,令,得,即, 是奇函数(2)由,及是奇函数,得

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3