ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:2.13MB ,
资源ID:80076      下载积分:4 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-80076-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2011届高考数学复习精品三角函数(一).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2011届高考数学复习精品三角函数(一).doc

1、2011届高考数学精品 三角函数数学试卷一、填空题(共 小题,每小题 分)1. 如图,正方体中,、分别为、的中点,则与所成角的大小为 2. 如图是一个几何体的三视图,若它的体积是,则a=_.3. 如图,已知正三棱柱的各条棱长都相等,是侧棱的中点,则异面直线所成的角的大小是 。4. 已知为球的半径,过的中点且垂直于的平面截球面得到圆,若圆的面积为,则球的表面积等于_.5. 方程在区间内的解是 6. 如图,相交与点O, 且,若得外接圆直径为1,则的外接圆直径为_.二、选择题(共 小题,每小题 分)7. 若直线,且直线平面,则直线与平面的位置关系是 ABC或D与相交或或8. 在正四棱柱中,顶点到对角

2、线和到平面的距离分别为和,则下列命题中正确的是( )A若侧棱的长小于底面的变长,则的取值范围为B若侧棱的长小于底面的变长,则的取值范围为C若侧棱的长大于底面的变长,则的取值范围为D若侧棱的长大于底面的变长,则的取值范围为9. 如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为。则该集合体的俯视图可以是10. 设是平面内的两条不同直线;是平面内的两条相交直线,则的一个充分而不必要条件是A. B. C. D. 11. 如图,在三棱柱ABC-A1B1C1中,ACB=900,ACC1=600,BCC1=450,侧棱CC1的长为1,则该三棱柱的高等于A. B. C. D. 12. 如图,正方

3、体的棱线长为1,线段上有两个动点E,F,且,则下列结论中错误的是 (A) (B) (C)三棱锥的体积为定值 (D)13. 一个棱锥的三视图如图,则该棱锥的全面积(单位:)为 (A) (B) (C) (D)14. 若函数的图象相邻两条对称轴间距离为,则等于 ABC2D415. 在中,的对边分别为,已知,则 A1B2CD16. sin 15cos 75cos 15sin 105等于( )A0BCD117. 将函数的图象上所有的点向左平行移动个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为A BC D三、解答题(共 小题,每小题 分)18. 如图,已知正方形

4、所在平面,、分别是,的中点,(1)求证:面;(2)求证:面面19. 如图,在五面体中,四边形为平行四边形,平面,求:()直线到平面的距离;()二面角的平面角的正切值20. 如图,平面,分别为的中点(I)证明:平面;(II)求与平面所成角的正弦值21. 如图,在四棱锥中,且DB平分,E为PC的中点,, ()证明 ()证明()求直线BC与平面PBD所成的角的正切值22. 如图,四棱锥中,底面为矩形,底面,点在侧棱上,。 证明:是侧棱的中点;求二面角的大小。23. 如图,平行四边形中,将沿折起到的位置,使平面平面 (I)求证: ()求三棱锥的侧面积。24. 如图,在三棱锥中,是等边三角形,PAC=P

5、BC=90 ()证明:ABPC()若,且平面平面, 求三棱锥体积。25. E A B C F E1 A1 B1 C1 D1 D 如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB/CD,AB=4, BC=CD=2, AA=2, E、E分别是棱AD、AA的中点. (1) 设F是棱AB的中点,证明:直线EE/平面FCC;(2) 证明:平面D1AC平面BB1C1C.26. 已知是关于的一元二次方程的两根,其中(1)求的值(2)求的值27. 在ABC中,a、b、c分别为三个内角A、B、C的对边,锐角B满足。() 求的值;() 若,当ac取最大值时,求的值28. 已知A,B,C是ABC的

6、三内角,向量,且 (1)求角A; (2)若,求29. 在中,内角的对边分别为,且(1)判断的性状;(2)若,求的取值范围。答案一、填空题1. 2. 解析:由已知正视图可以知道这个几何体是睡着的直三棱柱,两个底面是等腰的三角形,且底边为2,等腰三角形的高位a,侧棱长为3,结合面积公式可以得到 ,解得a=3. 解析:作BC的中点N,连接AN,则AN平面BCC1B1, 连接B1N,则B1N是AB1在平面BCC1B1的射影,B1NBM,AB1BM.即异面直线所成的角的大小是904. 5. 6. 2解析:由正弦定理可以知道,,所以的外接圆半径是外接圆半径的二倍。二、选择题7. D8. C解析:设底面边长

7、为1,侧棱长为,过作。在中,由三角形面积关系得设在正四棱柱中,由于,所以平面,于是,所以平面,故为点到平面 的距离,在中,又由三角形面积关系得于是,于是当,所以,所以9. 解法1 由题意可知当俯视图是A时,即每个视图是变边长为1的正方形,那么此几何体是立方体,显然体积是1,注意到题目体积是,知其是立方体的一半,可知选C. 解法2 当俯视图是A时,正方体的体积是1;当俯视图是B时,该几何体是圆柱,底面积是,高为1,则体积是;当俯视是C时,该几何是直三棱柱,故体积是,当俯视图是D时,该几何是圆柱切割而成,其体积是.故选C.10. 解析:要得到必须是一个平面内的两条相交直线分别与另外一个平面平行。若

8、两个平面平行,则一个平面内的任一直线必平行于另一个平面。对于选项A,不是同一平面的两直线,显既不充分也不必要;对于选项B,由于与时相交直线,而且由于/m可得,故可得,充分性成立,而不一定能得到/m,它们也可以异面,故必要性不成立,故选B.对于选项C,由于m,n不一定的相交直线,故是必要非充分条件.对于选项D,由可转化为C,故不符合题意。综上选B.11. A解析:过顶点A作底面ABC的垂线,由已知条件和立体几何线面关系易求得高的长.12. D13. A14. C15. B16. D17. B三、解答题18. 解析:(1)中点为,连、,分别为中点,即四边形为平行四边形,又面,面面(2),中,又且面

9、又面由(1)知面又面面面19. 解法一:()平面, AB到面的距离等于点A到面的距离,过点A作于G,因,故;又平面,由三垂线定理可知,故,知,所以AG为所求直线AB到面的距离。在中,由平面,得AD,从而在中,。即直线到平面的距离为。()由己知,平面,得AD,又由,知,故平面ABFE,所以,为二面角的平面角,记为.在中, ,由得,从而在中, ,故所以二面角的平面角的正切值为.解法二: ()如图以A点为坐标原点,的方向为的正方向建立空间直角坐标系数,则A(0,0,0)C(2,2,0) D(0,2,0) 设可得,由.即,解得 ,面,所以直线AB到面的距离等于点A到面的距离。设A点在平面上的射影点为,

10、则 因且,而,此即 解得,知G点在面上,故G点在FD上.,故有 联立,解得, 为直线AB到面的距离. 而 所以()因四边形为平行四边形,则可设, .由得,解得.即.故由,因,故为二面角的平面角,又,所以 20. ()证明:连接, 在中,分别是的中点,所以, 又,所以,又平面ACD ,DC平面ACD, 所以平面ACD()解析:在中,所以 而DC平面ABC,所以平面ABC 而平面ABE, 所以平面ABE平面ABC, 所以平面ABE由()知四边形DCQP是平行四边形,所以 所以平面ABE, 所以直线AD在平面ABE内的射影是AP, 所以直线AD与平面ABE所成角是 在中, ,所以21. (1)证明:

11、设,连结EH,在中,因为AD=CD,且DB平分,所以H为AC的中点,又有题设,E为PC的中点,故,又,所以(2)证明:因为,所以由(1)知,,故(3) 解析:由可知,BH为BC在平面PBD内的射影,所以为直线与平面PBD所成的角。由,在中,,所以直线BC与平面PBD所成的角的正切值为。22. 解法一:(1)作交于点E,则连接,则四边形为直角梯形 作垂足为F,则为矩形由解得:即 所以M为侧棱SC的中点(II)为等边三角形又由(I)知M为SC中点取AM中点G,连接BG,取SA中点H,连接GH,则由此知为二面角S-AM-B的平面角连接BH,在中,所以二面角S-AM-B的大小为解法二:以D为坐标原点,

12、射线DA为轴正半轴,建立如图所示的直角坐标系D-xyz设(I)设,则又故即解得所以M为侧棱SC的中点。(II)所以因此等于三角形S-AM-B的平面角23. (I)证明:在中, 又平面平面 平面平面平面 平面 平面()解析:由(I)知从而 在中, 又平面平面 平面平面,平面 而平面 综上,三棱锥的侧面积,24. 解析:()因为是等边三角形,,所以,可得。如图,取中点,连结,则,所以平面,所以。 ()作,垂足为,连结因为,所以,由已知,平面平面,故因为,所以都是等腰直角三角形。由已知,得, 的面积因为平面,所以三角锥的体积 25. 证明:(1)在直四棱柱ABCD-ABCD中,取A1B1的中点F1,

13、E A B C F E1 A1 B1 C1 D1 D F1连接A1D,C1F1,CF1,因为AB=4, CD=2,且AB/CD,所以CDA1F1,A1F1CD为平行四边形,所以CF1/A1D,又因为E、E分别是棱AD、AA的中点,所以EE1/A1D,所以CF1/EE1,又因为平面FCC,平面FCC,所以直线EE/平面FCC.E A B C F E1 A1 B1 C1 D1 D (2)连接AC,在直棱柱中,CC1平面ABCD,AC平面ABCD,所以CC1AC,因为底面ABCD为等腰梯形,AB=4, BC=2, F是棱AB的中点,所以CF=CB=BF,BCF为正三角形,,ACF为等腰三角形,且所以ACBC, 又因为BC与CC1都在平面BB1C1C内且交于点C,所以AC平面BB1C1C,而平面D1AC,所以平面D1AC平面BB1C1C.【命题立意】: 本题主要考查直棱柱的概念、线面平行和线面垂直位置关系的判定.熟练掌握平行和垂直的判定定理.完成线线、线面位置关系的转化.26. 解析:(1)由韦达定理, , 式平方,得 (2) 又 由知 27. 解析:()锐角B满足1分5分 () ,8分10分12分28. 29.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3