收藏 分享(赏)

宁夏回族自治区2012届高三数学文科仿真模拟卷6.doc

上传人:高**** 文档编号:796710 上传时间:2024-05-30 格式:DOC 页数:8 大小:1.11MB
下载 相关 举报
宁夏回族自治区2012届高三数学文科仿真模拟卷6.doc_第1页
第1页 / 共8页
宁夏回族自治区2012届高三数学文科仿真模拟卷6.doc_第2页
第2页 / 共8页
宁夏回族自治区2012届高三数学文科仿真模拟卷6.doc_第3页
第3页 / 共8页
宁夏回族自治区2012届高三数学文科仿真模拟卷6.doc_第4页
第4页 / 共8页
宁夏回族自治区2012届高三数学文科仿真模拟卷6.doc_第5页
第5页 / 共8页
宁夏回族自治区2012届高三数学文科仿真模拟卷6.doc_第6页
第6页 / 共8页
宁夏回族自治区2012届高三数学文科仿真模拟卷6.doc_第7页
第7页 / 共8页
宁夏回族自治区2012届高三数学文科仿真模拟卷6.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、宁夏回族自治区2012届高三数学文科仿真模拟卷6一、选择题1已知集合,则=( )A(0,1)B-1,1CD2若,则c等于( )A-a+3bBa-3bC3a-bD-3a+b3已知四棱锥PABCD的三视图如右图所示,则四棱锥PABCD的体积为( )ABCD4已知函数的部分图象如图所示,则的解析式是( )ABCD5阅读下列程序,输出结果为2的是( )6在中,则的值是( )A-1B1CD-27设m,n是两条不同的直线,是三个不同的平面,有下列四个命题:若若若若其中正确命题的序号是( )ABCD8两个正数a、b的等差中项是一个等比中项是则双曲线的离心率e等于( )ABCD9已知定义域为R的函数在区间上为

2、减函数,且函数为偶函数,则( )ABCD10数列中,且数列是等差数列,则等于( )ABCD511已知函数若,则实数x的取值范围是( )ABCD12若函数的图象在x=0处的切线与圆相离,则与圆C的位置关系是( )A在圆外B在圆内C在圆上D不能确定第卷二、填空题(本大题共4小题,每小题5分,共20分。把答案填在答题卷的相应位置上。)13复数的共轭复数= 。14右图为矩形,长为5,宽为2,在矩形内随机地撤300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为 。15设斜率为2的直线过抛物线的焦点F,且和y轴交于点A,若(O为坐标原点)的面积为4,则抛物线方程为 。16下列

3、说法:“”的否定是“”;函数的最小正周期是命题“函数处有极值,则”的否命题是真命题;上的奇函数,时的解析式是,则时的解析式为其中正确的说法是 。三、解答题。17(本小题12分) 在中,a、b、c分别为内角A、B、C的对边,且 (1)求角A 的大小; (2)设函数时,若,求b的值。18(本小题12分) 某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据x681012y2356 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程; (3)试根据(II)求出的线性回归方程,预测记忆力为9的同学的判断力。 (相关公式:)19(本小题12分)

4、 如图,已知四棱锥PABCD的底面是直角梯形,AB=BC=2CD=2,PB=PC,侧面底面ABCD,O是BC的中点。 (1)求证:DC/平面PAB; (2)求证:平面ABCD; (3)求证:20(本小题12分) 设函数 (1)当函数有两个零点时,求a的值; (2)若时,求函数的最大值。21(本小题12分) 已知椭圆的左焦点是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线交椭圆于C、D两点,记直线AD、BC的斜率分别为 (1)当点D到两焦点的距离之和为4,直线轴时,求的值; (2)求的值。22(本小题满分10分)选修41:几何证明选讲 如图所示,已知PA是O相切,

5、A为切点,PBC为割线,弦CD/AP,AD、BC相交于E点,F为CE上一点,且 (1)求证:A、P、D、F四点共圆; (2)若AEED=24,DE=EB=4,求PA的长。参考答案一、选择题CBBBA ADCDB DB二、 填空题13 14 15 16三、 解答题17 ()解:在中,由余弦定理知, 注意到在中,所以为所求 4分()解: , 由得,8分 注意到,所以, 由正弦定理, , 所以为所求 12分18 ()如右图: 3分 ()解:=62+83+105+126=158,=,=,故线性回归方程为 10分()解:由回归直线方程预测,记忆力为9的同学的判断力约为4 12分19 ()证明:由题意,平

6、面,平面,所以平面4分()证明:因为,是的中点,所以,又侧面PBC底面ABCD,平面,面PBC底面ABCD,所以平面 8分()证明:因为平面,由知,在和中,所以,故,即,所以,又,所以平面,故 12分20 ()解:,由得,或,由得,所以函数的增区间为,减区间为,即当时,函数取极大值,当时,函数取极小值, 3分又,所以函数有两个零点,当且仅当或,注意到,所以,即为所求6分 ()解:由题知,当即时,函数在上单调递减,在上单调递增,注意到,所以; 9分当即时,函数在上单调增,在上单调减,在上单调增,注意到,所以;综上, 12分21 ()解:由题意椭圆的离心率,所以,故椭圆方程为, 3分则直线,故或, 当点在轴上方时,所以,当点在轴下方时,同理可求得,综上,为所求 6分 ()解:因为,所以, 椭圆方程为,直线,设,由消得,所以8分故 由,及,9分得,将代入上式得,10分注意到,得,11分所以为所求 12分22 ()证明:,又, 又故,所以四点共圆5分()解:由()及相交弦定理得,又,由切割线定理得,所以为所求 10分

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3