ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:68.50KB ,
资源ID:778234      下载积分:1 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-778234-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2021秋八年级数学上册 第13章 三角形中的边角关系、命题与证明13.2 命题与证明 3三角形内角和定理的推论——直角三角形角的性质教案(新版)沪科版.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2021秋八年级数学上册 第13章 三角形中的边角关系、命题与证明13.2 命题与证明 3三角形内角和定理的推论——直角三角形角的性质教案(新版)沪科版.doc

1、第3课时三角形内角和定理的推论直角三角形角的性质教学目标【知识与技能】1.掌握三角形内角和定理及其三个推论.2.熟悉并掌握较简单命题的证明方法及其表述.3.探索并理解三角形的内角和定理.4.会灵活地运用三角形内角和定理的几个推论解决实际问题.【过程与方法】1.经历探索并证明三角形内角和定理的过程.2.让学生在思考与探索的过程中了解三角形内角和定理的几个推论.【情感、态度和价值观】1.通过三角形内角和定理的证明,让学生体会到数学的严谨性和推理的用途.2.通过让学生积极思考、踊跃发言,使他们养成良好的学习习惯.3.通过生动的教学活动,发展学生的合情推理能力和表达能力,提高学生学习和探索数学的兴趣.

2、重点难点【重点】三角形内角和定理的证明,三角形内角和定理及其推理.【难点】三角形内角和定理的证明.教学过程一、创设情境,导入新知师:在前面我们学习了三角形的内角和定理,你还记得它的内容吗?学生回答.师:我们用什么方法证明过这个命题?生:用折叠、剪拼和度量的方法.师:很好!在上节课我们学习了定理的概念,大家还记得吗?生:记得.它们的正确性已经过推理得到证实,并被选定作为判定其他命题真假的依据,这样的真命题叫做定理.师:对.三角形的内角和定理是一个定理,它能够被证实,上节课我们还学习了简单命题的证明,现在我们来证明这个定理.二、共同探究,获取新知教师多媒体出示:【例1】证明三角形内角和定理:三角形

3、的三个内角和等于180.师:在证明命题时,要分清命题的条件和结论,如果问题与图形有关,首先,根据条件画出图形,并在图形上标出有关字母与符号;再结合图形,写出已知、求证.这个命题的条件和结论分别是什么?生:条件是一个三角形,结论是它的内角和等于180.师:这个命题与图形有关吗?生:有关.师:那我们要画出什么图形?生:一个三角形.教师在黑板上画出一个三角形.师:题目中没有已知、求证,我们自己要写出来.已知就是条件,求证的就是要证的结论.应该怎么写?生:已知:ABC,如图所示.求证:A+B+C=180.教师板书.师:以前我们通过剪拼将三角形的三个内角拼成了一个平角,这不是证明,但它却给我们以启发,现

4、在我们通过作图来实现这种转化,给出证明.教师边操作边讲解:在剪拼中我们可以把B剪下,放在这个位置,在证明中我们可以作出一个角与B相等,来代替这种操作.并且为了证明的需要,在原来图形上添画的线,这种线叫做辅助线.同学们看,应该怎样添画辅助线来帮助我们证明这个问题?生:延长BC到D,以点C为顶点、CD为一边作2=B.教师作图:师:对.如果再知道什么条件就能得到结论了?学生讨论后回答.生:因为1+2+ACB是一个平角,等于180,如果A=1,那么就有A+B+C=1+2+ACB=180,这样就证出了结论.师:对.现在我们看怎样证A=1?学生交流讨论.教师提示:A和1是什么角?生:内错角.师:怎么证两个

5、内错角相等?生:两直线平行,内错角相等.师:在题中要证哪两条直线平行?怎么证它们平行?生:证明CEBA,因为2=B,由同位角相等,两直线平行,就可以证出CEBA了.师:很好!我们现在来把这个推导过程具体写一下.要注意,我们刚才是分析,可以由结论推条件,但在书写过程中,要先写条件,再写结论,这个顺序要理清.学生口述,教师板书.师:现在大家想一想,如果一个三角形中一个角是90,根据三角形内角和定理,另外两个角的和会是多少?生:90.师:对.两个角的和是90,我们可以称它们之间是什么关系?生:互余.师:对.由此我们得到三角形内角和定理的第一个推论.教师板书:推论1直角三角形的两锐角互余.三、边讲边练

6、师:三角形内角和定理的证明有多种方法,课本练习中给出了另外两种证法.大家能不能说出第一题的思路?生:过点A作DEBC后,由两直线平行,内错角相等来建立两个相等关系,再由平角的定义就可证出了.师:你们已经理清了思路,现在请大家将书上的证明过程补充完整.学生完成练习第1题.师:第二个练习的思路大家清楚吗?学生交流讨论后回答.生:过三角形一边上一点作两条平行线,然后根据平行线的性质使ABC的三个内角与组成平角的三个角分别相等,再由平角的定义证明它们的和是180.师:很好!请同学们把证明过程补充完整.学生补充练习第2题的证明,教师巡视指导,然后集体订正.四、课堂小结师:我们今天学习了哪些内容?你有什么收获?学生发言,教师点评.教学反思本节课我通过让学生自己思考设计证明思路,来培养学生积极思考的探索精神.在证明三角形内角和定理的第一种证法中,我带领他们回顾了以前证明此定理的操作方法,并说明这两种方法的思想是一致的.一方面可以让他们学会把实际问题用数学形式表示出来,另一方面培养了他们建立相关事物之间的联系的意识,促进知识的迁移.在证明三角形内角和定理的练习中,我让他们先理清思路,再做题,不但可以借鉴别人的思路,而且能做到整体把握,理清脉络.4

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3