收藏 分享(赏)

(全国版)2022高考数学一轮复习 第2章 函数概念与基本初等函数Ⅰ第4讲 指数与指数函数试题2(理含解析).docx

上传人:高**** 文档编号:778103 上传时间:2024-05-30 格式:DOCX 页数:4 大小:93.83KB
下载 相关 举报
(全国版)2022高考数学一轮复习 第2章 函数概念与基本初等函数Ⅰ第4讲 指数与指数函数试题2(理含解析).docx_第1页
第1页 / 共4页
(全国版)2022高考数学一轮复习 第2章 函数概念与基本初等函数Ⅰ第4讲 指数与指数函数试题2(理含解析).docx_第2页
第2页 / 共4页
(全国版)2022高考数学一轮复习 第2章 函数概念与基本初等函数Ⅰ第4讲 指数与指数函数试题2(理含解析).docx_第3页
第3页 / 共4页
(全国版)2022高考数学一轮复习 第2章 函数概念与基本初等函数Ⅰ第4讲 指数与指数函数试题2(理含解析).docx_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第二章 函数的概念与基本初等函数I第四讲指数与指数函数1.2021山东省烟台市期中若a=(13)0.6,b=3-0.8,c=ln 3,则a,b,c的大小关系为()A.bcaB.cabC.cbaD.acb2.原创题已知函数f(x)=2x+x-5,则不等式-2f(4x-1)6的解集为()A.-1,-12B.-12,12C.12,1D.1,323.2021湖南六校联考若函数f(x)=(12)x-a的图象经过第一、二、四象限,则f(a)的取值范围为()A.(0,1)B.(-12,1)C.(-1,1)D.(-12,+)4.设bR,若函数f(x)=4x-2x+1+b在-1,1上的最大值是3,则其在-1,1

2、上的最小值是()A.2B.1C.0D.-15.2020合肥市三检已知函数f(x)=1ax-ax(a1),则不等式f(2x2)+f(x-1)0的解集是()A.(-,-1)(12,+)B.(-,-12)(1,+)C.(-12,1)D.(-1,12)6.2021嘉兴市高三测试函数f(x)是定义在R上的奇函数,且当x0时,f(x)=2x-4,则f(-1)=;不等式f(x)0的解集为.7.答案不唯一能说明“已知f(x)=2|x-1|,若f(x)g(x)对任意的x0,2恒成立,则在0,2上,f(x)mIng(x)max”为假命题的一个函数g(x)=.(填出一个函数即可) 8.2021黑龙江省六校阶段联考物

3、体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0 ,经过一段时间tmIn后的温度是T ,则T-Ta=(T0-Ta)(12)th,其中Ta(单位:)表示环境温度,h(单位:mIn)称为半衰期.现有一份88 的热饮,放在24 的房间中,如果热饮降温到40 需要20 mIn,那么降温到32 时,需要的时间为()A.24 mInB.25 mInC.30 mInD.40 mIn9.2021河北石家庄二中模拟已知0(cos )cos (sIn)cos B.(sIn)cos (cos )sIn(cos )cos C.(cos )cos (sIn)cos (cos )sInD.(cos )

4、cos (cos )sIn(sIn)cos 10.2021惠州市一调对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),称f(x)为“局部奇函数”.若f(x)=4x-m2x+1+m2-3为定义在R上的“局部奇函数”,则实数m的取值范围是()A.1-3,1+3B.1-3,22C.-22,22D.-22,1-311.2020广东七校第二次联考已知函数f(x)=x-4+9x+1,x(0,4),当x=a时,f(x)取得最小值b,则函数g(x)=a|x+b|的图象为()12.设函数f(x)=2-x,x1,x2,x1,则y=2f(f(x)-f(x)的取值范围为()A.(-,0B.0,22

5、-12C.22-12,+)D.(-,022-12,+)13.已知点P(a,b)在函数y=e2x的图象上,且a1,b1,则alnb的最大值为.14.已知函数f(x)=ex,若关于x的不等式f(x)2-2f(x)-a0在0,1上有解,则实数a的取值范围为.答 案第四讲指数与指数函数1.B因为a=(13)0.6=3-0.6,由指数函数y=3x在R上单调递增,且-0.6-0.8可得a=3-0.63-0.8=b,且baln e=1,所以cab.故选B.2.C因为函数y=2x与y=x-5在R上均为增函数,所以函数f(x)=2x+x-5在R上为增函数.易知f(1)=-2,f(3)=6,所以不等式-2f(4x

6、-1)6等价于f(1)f(4x-1)f(3),等价于14x-13,解得12x1,故选C.3.B依题意可得f(0)=1-a,则01-a1,-a0, 解得0a1时,y=1ax和y=-ax均为减函数,所以函数f(x)=1ax-ax(a1)在R上为减函数.又f(-x)=1a-x-a-x=ax-a-x=-f(x),所以f(x)为奇函数.不等式f(2x2)+f(x-1)0可化为f(2x2)f(1-x),所以2x21-x,即2x2+x-10,解得-1x0时,令f(x)=2x-40,得0x2,因为f(x)是定义在R上的奇函数,所以当x0时,令f(x)0,得x-2,当x=0时,f(0)=0,此时不满足f(x)0

7、.所以f(x)0的解集为(-,-2)(0,2).7.x-12(答案不唯一)易知函数f(x)=2|x-1|在x0,2上的最小值是1,取g(x)=x-12,作出f(x),g(x)在0,2上的图象如图D 2-4-4,满足f(x)g(x)对任意的x0,2恒成立,但g(x)=x-12在0,2上的最大值是32,不满足f(x)ming(x)max,所以 g(x)=x-12能说明题中命题是假命题.8.C由题意,得40-24=(88-24)(12)20h,即14=(12)20h,解得h=10,所以T-24=(88-24)(12)t10,即T-24=64(12)t10,将T=32代入上式,得32-24=64(12

8、)t10,即18=(12)t10,解得t=30,所以需要30 min,可降温到32 ,故选C.9.A设a=cos ,b=sin ,因为0ab0,则函数f(x)=ax为减函数,所以abaa,根据幂函数的性质可得aaba,故有abaaba,即(cos )sin (cos )cos (sin )cos ,故选A.10.B因为函数f(x)=4x-m2x+1+m2-3为定义在R上的“局部奇函数”,所以方程f(x)=-f(-x)有解,即方程4x-m2x+1+m2-3=-(4-x-m2-x+1+m2-3)有解,整理得(4x+14x)-2m(2x+12x)+2(m2-3)=0,即方程(2x+12x)2-2m(

9、2x+12x)+2m2-8=0有解,令t=2x+12x,则t2,即方程t2-2mt+2m2-8=0(*)在t2,+)上有解,设g(t)=t2-2mt+2m2-8.(1)当方程(*)有两个相等的解时,由=0,m2,解得m=22.(2)当方程(*)有两个不相等的解,其中一个解小于2,另一个解大于等于2时,则g(2)0或g(2)=0,m2,解得1-3m0,g(2)0,m2,解得1+3m1,所以f(x)=x-4+9x+1=x+1+9x+1-529x+1(x+1)-5=1,当且仅当x=2时取等号,此时函数f(x)取得最小值1,所以a=2,b=1,所以g(x)=2|x+1|=2x+1,x-1,(12)x+

10、1,x-1,函数g(x)的图象可以看作由函数y=2x,x0,(12)x,x1的图象如图D 2-4-5中实线所示,由图可知f(x)12,+),设f(x)=t,则t12,+),因为y=2f(f(x)-f(x),所以y=2f(t)-t,t12,+),所以12t1,y=21-t-t或t1,y=0.因为y=21-t-t在12,1上单调递减,所以0y22-12,所以y=2f(f(x)-f(x)的取值范围为0,22-12,故选B.图D 2-4-513.e由题意知b=e2a,则alnb=alne2a=a2-ln a,令t=a2-ln a(t0),则ln t=ln a2-ln a=-(ln a)2+2ln a=-(ln a-1)2+11,所以ln a=1时,t取得最大值e,即alnb的最大值为e.14.(-,e2-2e由f(x)2-2f(x)-a0在0,1上有解,可得存在x0,1,af(x)2-2f(x),即ae2x-2ex.令g(x)=e2x-2ex(0x1),则ag(x)max.因为0x1,所以1exe,则当ex=e,即x=1时,g(x)max=e2-2e,即ae2-2e,故实数a的取值范围为(-,e2-2e.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3