1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。知能巩固提升(十七)/课后巩固作业(十七) (时间:30分钟 满分:50分)一、选择题(每小题4分,共16分)1.(2012潍坊高二检测)服从正态分布N(2,2),若P(c)=a,则P(4-c)等于( )(A)a (B)1-a (C)2a (D)1-2a2.正态分布N(0,1)在区间(-2,-1)和(1,2)上取值的概率为P1,P2,则二者大小关系为( )(A)P1P2 (B)P1P2 (C)P1P2 (D)不确定3.若随机变量X服从正态分布,其正态曲线上的最高点的坐标是(10,),则该随机变量的方
2、差等于( )(A)10 (B)100 (C) (D)4.某厂生产的零件外直径XN(8.0,0.022 5),单位mm,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为7.9 mm和7.5 mm,则可认为( )(A)上、下午生产情况均为正常 (B)上、下午生产情况均为异常(C)上午生产情况正常,下午生产情况异常(D)上午生产情况异常,下午生产情况正常二、填空题(每小题4分,共8分)5.均值为2,标准差为的正态分布的正态密度函数是_.6.(2012黄冈高二检测)设随机变量服从正态分布N(2,9),若P(c1)P (c-1),则c的值为_.三、解答题(每小题8分,共16分)7.(201
3、2天水高二检测)某年级的一次信息技术成绩近似服从正态分布N(70,100),如果规定低于60分为不及格,不低于90分为优秀,那么成绩不及格的学生约占多少?成绩优秀的学生约占多少?(参考数据:P(-+)=0.682 6,P(-2+2)=0.954 4).8.(易错题)已知某地农民工年均收入服从正态分布,其正态密度函数图象如图所示.(1)写出此地农民工年均收入的正态曲线函数式;(2)求此地农民工年均收入在8 0008 500之间的人数百分比.【挑战能力】(10分)某人骑自行车上班,第一条路线较短但拥挤,到达时间X(分钟)服从正态分布N(5,1);第二条路较长但不拥挤,X服从正态分布N(6,0.16
4、).有一天他出发时离点名时间还有7分钟,问他应选哪一条路线?若离点名时间还有6.5分钟,问他应选哪一条路线?答案解析1.【解析】选B.N(2,2),=2,又c与4-c关于=2对称,故P(4-c)=P(c)=1-P(c)=1-a.2.【解析】选A.根据正态曲线的特点,图象关于x0对称,可得在区间(-2,-1)和(1,2)上取值的概率P1,P2相等.3.【解析】选C.由正态分布密度曲线上的最高点为知4.【解题指南】利用3原则对本题作出判断.【解析】选C.根据3原则,在(8-30.15,8+30.15即(7.55,8.45之外时为异常.结合已知可知上午生产情况正常,下午生产情况异常.5.【解析】均值
5、为2,标准差为,又答案:【误区警示】本题在求解过程中,常因对正态曲线的函数解析式掌握不牢而出错.6.【解析】c1与c-1关于2对称,2,c2.答案:2【变式训练】已知正态分布落在区间(0.2,)上的概率为0.5,那么相应的正态曲线f(x)在x_时,达到最高点.【解析】由于正态曲线关于直线x对称且其落在区间(0.2,)上的概率为0.5,得0.2.答案:0.27.【解析】由题意得:=70,=10,P(-+)=0.682 6,P(-2+2)=0.954 4.(1) (6080)=.(2)=0.022 8.答:成绩不及格的学生约占15.87%,成绩优秀的学生约占2.28%.8.【解析】设农民工年均收入
6、N(,2),结合图象可知8 000,500.(1)此地农民工年均收入的正态分布密度函数表达式为(2)P(7 5008 500)P(8 000-5008 000500)0.682 6.P(8 0008 500)P(7 5008 500)0.341 3.此地农民工年均收入在8 0008 500之间的人数百分比为34.13%.【挑战能力】【解题指南】计算两条路线能及时到达的概率大小,依次作出判断.【解析】还有7分钟时,若选第一条路线,X服从N(5,1),能及时到达的概率P1=P(X7)=P(X5)+P(5X7)=若选第二条路线,X服从N(6,0.16),能及时到达的概率P2=P(X7)=P(X6)+P(6X7)=所以P1P2,选第二条路线.同理,还有6.5分钟时,选第一条路线.高考资源网()来源:高考资源网版权所有:高考资源网(www.k s 5 )