收藏 分享(赏)

4.3探索三角形全等的条件第2课时利用“角边角”“角角边”判定三角形全等教案(北师大版七下).docx

上传人:a**** 文档编号:774239 上传时间:2025-12-14 格式:DOCX 页数:2 大小:115.81KB
下载 相关 举报
4.3探索三角形全等的条件第2课时利用“角边角”“角角边”判定三角形全等教案(北师大版七下).docx_第1页
第1页 / 共2页
4.3探索三角形全等的条件第2课时利用“角边角”“角角边”判定三角形全等教案(北师大版七下).docx_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第2课时利用“角边角”“角角边”判定三角形全等1理解并掌握三角形全等的判定方法“角边角”“角角边”;(重点)2能运用“角边角”“角角边”判定方法解决有关问题(难点)一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流教师点拨:显然仅仅带或是无法配成完全一样的玻璃的,而仅仅带则可以,为什么呢?本节课我们继续研究三角形全等的判定方法二、合作探究探究点一:全等三角形判定定理“ASA” 如图,ADBC,BEDF,AECF,试说明:ADFCBE.解析:根据平行线的性质可得A

2、C,DFEBEC,再根据等式的性质可得AFCE,然后利用“ASA”可得到ADFCBE.解:ADBC,BEDF,AC,DFEBEC.AECF,AEEFCFEF,即AFCE.在ADF和CBE中,ADFCBE(ASA)方法总结:在“ASA”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分;在“ASA”中,“边”必须是“两角的夹边”探究点二:全等三角形判定定理“AAS” 如图,在ABC中,ADBC于点D,BEAC于E.AD与BE交于F,若BFAC,试说明:ADCBDF.解析:先说明ADCBDF,DACDBF,再由BFAC,根据“AAS”即可得出两三角形全等解

3、:ADBC,BEAC,ADCBDFBEA90.AFEBFD,DACAEFAFE180,BDFBFDDBF180,DACDBF.在ADC和BDF中,ADCBDF(AAS)方法总结:在“AAS”中,“边”是其中一个角的对边探究点三:全等三角形判定与性质的综合 在ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E.试说明:(1)BDAAEC;(2)DEBDCE.解析:(1)由垂直的关系可以得到一对直角相等,利用“同角的余角相等”得到一组对应角相等,再由ABAC,利用“AAS”即可得出结论;(2)由BDAAEC,可得BDAE,ADCE,根据DEDAAE等量代换即

4、可得出结论解:(1)BDm,CEm,ADBCEA90,ABDBAD90.ABAC,BADCAE90,ABDCAE.在BDA和AEC中,BDAAEC(AAS);(2)BDAAEC,BDAE,ADCE,DEDAAEBDCE.方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化三、板书设计1角边角:两角及其夹边分别相等的两个三角形全等,简写成“角边角”或“ASA”2角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成“角角边”或“AAS” 本节课的教学借助于动手操作、分组讨论等探究出三角形全等的判定方法在寻找判定方法说明两个三角形全等的条件时,可先把容易找到的条件列出来,然后再根据判定方法去寻找所缺少的条件从课堂教学的情况来看,学生对“角边角”掌握较好,达到了教学的预期目的存在的问题是少数学生在方法“AAS”和“ASA”的选择上混淆不清,还需要在今后的教学中进一步加强巩固和训练。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1