收藏 分享(赏)

2017-2018学年高一数学人教A版必修2试题:1-3-1柱体、锥体、台体的表面积与体积 WORD版含解析.doc

上传人:高**** 文档编号:774014 上传时间:2024-05-30 格式:DOC 页数:6 大小:241KB
下载 相关 举报
2017-2018学年高一数学人教A版必修2试题:1-3-1柱体、锥体、台体的表面积与体积 WORD版含解析.doc_第1页
第1页 / 共6页
2017-2018学年高一数学人教A版必修2试题:1-3-1柱体、锥体、台体的表面积与体积 WORD版含解析.doc_第2页
第2页 / 共6页
2017-2018学年高一数学人教A版必修2试题:1-3-1柱体、锥体、台体的表面积与体积 WORD版含解析.doc_第3页
第3页 / 共6页
2017-2018学年高一数学人教A版必修2试题:1-3-1柱体、锥体、台体的表面积与体积 WORD版含解析.doc_第4页
第4页 / 共6页
2017-2018学年高一数学人教A版必修2试题:1-3-1柱体、锥体、台体的表面积与体积 WORD版含解析.doc_第5页
第5页 / 共6页
2017-2018学年高一数学人教A版必修2试题:1-3-1柱体、锥体、台体的表面积与体积 WORD版含解析.doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第一章 1.3 1.3.1A级基础巩固一、选择题1若圆锥的正视图是正三角形,则它的侧面积是底面积的(C)A倍B3倍C2倍D5倍解析设圆锥的底面半径为r,母线长为l,则由题意知,l2r,于是S侧r2r2r2,S底r2.故选C2长方体的高为1,底面积为2,垂直于底的对角面的面积是,则长方体的侧面积等于(C)A2B4C6D3解析设长方体的长、宽、高分别为a、b、c,则c1,ab2,c,a2,b1,故S侧2(acbc)6.3圆柱的侧面展开图是长12 cm,宽8 cm的矩形,则这个圆柱的体积为(C)A cm3B cm3C cm3或 cm3D192 cm3解析圆柱的高为8 cm时,V()28cm3,当圆柱

2、的高为12 cm时,V()212cm3.4圆台的体积为7,上、下底面的半径分别为1和2,则圆台的高为(A)A3B4C5D6解析由题意,V(24)h7,h3.5若一圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积之比为(D)A1BCD解析设圆柱底面半径为R,圆锥底面半径r,高都为h,由已知得2Rhrh,r2R,V柱V锥R2hr2h34,故选D6(2015山东文)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为(B)ABC2D4解析绕等腰直角三角形的斜边所在的直线旋转一周形成的曲面围成的几何体为两个底面重合,等体积的圆锥,如图所

3、示每一个圆锥的底面半径和高都为,故所求几何体的体积V22.二、填空题7一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的表面积为_242_.解析该几何体是三棱柱,且两个底面是边长为2的正三角形,侧面是全等的矩形,且矩形的长是4,宽是2,所以该几何体的表面积为2(2)3(42)242.8设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为V1、V2,若它们的的侧面积相等且S1S294,则V1V2_32_.解析设甲圆柱底面半径r1,高h1,乙圆柱底面半径r2,高h2,又侧面积相等得2r1h12r2h2,.因此.三、解答题9如图所示的几何体是一棱长为4 cm的正方体,若在其中一个面的中心

4、位置上,挖一个直径为2 cm、深为1 cm的圆柱形的洞,求挖洞后几何体的表面积是多少?(取3.14)解析正方体的表面积为44696(cm2),圆柱的侧面积为2116.28(cm2),则挖洞后几何体的表面积约为966.28102.28(cm2)B级素养提升一、选择题1(2017浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是(A)A1B3C1D3解析由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是的等腰直角三角形,高为3的三棱锥的组合体,该几何体的体积V12331.故选A2某几何体的三视图如图所示,则该几何体的表面积为

5、(D)A180B200C220D240解析几何体为直四棱柱,其高为10,底面是上底为2,下底为8,高为4,腰为5的等腰梯形,故两个底面面积的和为(28)4240,四个侧面面积的和为(2852)10200,所以直四棱柱的表面积为S40200240.3(2015全国卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为(D)ABCD解析由三视图得,在正方体ABCDA1B1C1D1中,截去四面体AA1B1D1,如图所示,设正方体棱长为a,则VAA1B1D1a3a3,故剩余几何体体积为a3a3a3,所以截去部分体积与剩余部分体积的比值为.4(2017全国卷

6、理,7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形该多面体的各个面中有若干个是梯形,这些梯形的面积之和为(B)A10B12C14D16解析观察三视图可知该多面体是由直三棱柱和三棱锥组合而成的,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示因此该多面体各个面中有2个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这些梯形的面积之和为2(24)212.故选B二、填空题5已知圆柱OO的母线l4 cm,全面积为42 cm2,则圆柱OO的底面

7、半径r _3_cm.解析圆柱OO的侧面积为2rl8r(cm2),两底面积为2r22r2(cm2),2r28r42,解得r3或r7(舍去),圆柱的底面半径为3 cm.6已知斜三棱柱的三视图如图所示,该斜三棱柱的体积为_2_.解析由三视图可知,斜三棱柱的底面三角形的底边长为2,高为1,斜三棱柱的高为2,故斜三棱柱的体积为V2122.C级能力拔高1如图在底面半径为2,母线长为4的圆锥中内接一个高为的圆柱,求圆柱的表面积.解析设圆锥的底面半径为R,圆柱的底面半径为r,表面积为S.则ROC2,AC4,AO2.如图所示易知AEBAOC,即,r1,S底2r22,S侧2rh2.SS底S侧22(22).2在长方体ABCDA1B1C1D1中,截下一个棱锥CA1DD1,求棱锥CA1DD1的体积与剩余部分的体积之比.解析设矩形ADD1A1的面积为S,ABh,VABCDA1B1C1D1VADD1A1BCC1B1Sh.而棱锥CA1DD1的底面积为S,高为h,故三棱锥CA1DD1的体积为:VCA1DD1ShSh,余下部分体积为:ShShSh.所以棱锥CA1DD1的体积与剩余部分的体积之比为15.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3