ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:207.25KB ,
资源ID:773945      下载积分:6 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-773945-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(4.2.1 指数函数的概念(课时教学设计)(张园华)-高中数学新教材必修第一册小单元教学 专家指导(视频 教案).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

4.2.1 指数函数的概念(课时教学设计)(张园华)-高中数学新教材必修第一册小单元教学 专家指导(视频 教案).docx

1、第3课时 指数函数概念课时教学设计(一)教学内容指数函数的概念.(二)教学目标通过具体实例,了解指数函数的实际意义,理解指数函数的概念,发展数学抽象素养.(三)教学重点与难点教学重点:指数函数的概念.教学难点:指数函数的概念.(四)教学过程设计引导语:对于幂 ax(𝑎0),我们已经把指数𝑥的范围拓展到了实数上一章学习了函数的概念和基本性质,通过对幂函数的研究,进一步了解了研究一类函数的过程和方法下面继续研究其他类型的基本初等函数问题1:随着中国经济高速增长,人民生活水平不断提高,旅游成了越来越多家庭的重要生活方式.由于旅游人数不断增加,A,B两地景区自2001年

2、起采取了不同的对应措施,A地提高了景区门票价格,而B地则取消了景区门票.表4.2-1给出了A,B两地景区2001年至2015年的游客人次以及逐年增加量.表4.2-1时间/年A地景区B地景区人次/万次年增加量/万次人次/万次年增加量/万次20016002782002609930931200362011344352004631113833920056411042744200665094754820076611152853200867110588602009681106556720106911072974201170211811822012711990392201372110100510220147

3、321111181132015743111244126比较两地景区游客人次的变化情况,你发现了怎样的变化规律?师生活动:(1)追问:能否作出A,B两地景区游客人次变化的图象,根据图象并结合年增长量,说明两地景区游客人次的变化情况?学生独立思考、讨论交流. 教师利用Excel作出A,B两地景区游客人次变化的图象,直观感受A,B两地景区游客增长的情况.(2)追问:用“增加量”刻画B地景区人次的变化规律不直观. 能不能换一个量来刻画?教师指出,可以用“增长率”,即从2002年起,将B地景区每年的游客人次除以上一年的游客人次,看看能否发现什么规律?学生动手计算,教师利用Excel算出B地景区游客人次年

4、增长率为常数.(3)追问:能否求出两地景区游客人次随时间(经过的年数)变化的函数解析式,并根据解析式说明两地景区游客人次的变化情况.如果设经过x年后的游客人次为2001年的y倍,那么y=1.11x(x0,+).设计意图:通过寻求A,B两地景区游客人次增加的规律,引出用函数刻画指数增长的问题,为抽象出指数函数作准备.问题2:当生物死亡后,其机体内原有的碳14含量会按确定的衰减比率(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.按照上述变化规律,生物体内碳14含量与死亡年数之间有怎样的关系?师生活动:追问:生物死亡后体内碳14含量每年衰减的比例是多少?追问:能否求出生

5、物体内碳14含量随死亡年数变化的函数解析式?教师提出问题,并让学生类比问题1对提出的问题进行思考.通过对问题的分析,引导学生用函数y=(12)15730)x (x0,+)刻画碳14衰减的规律.设计意图:通过描述碳14衰减的规律,引出用函数刻画指数衰减的问题,为抽象得到指数函数作准备.问题3:比较问题1,2中的两个实例:B地景区游客人次增长的函数解析式y=1.11x与碳14衰减的函数解析式y=(12)15730)x 有什么共同特征?师生活动:从解析式上来看,如果用字母a代替底数1.11和(12)15730,那么上述函数y=1.11x和y=(12)15730)x 就都可以表示为y=ax的形式,其中

6、指数x是自变量,底数a是一个大于0且不等于1的常数.从而引出指数函数的概念:一般地,函数 y=ax(a0,且a1)叫做指数函数,其中指数x是自变量,定义域是R.设计意图:通过分析、比较两个实例,概括它们的共同本质特征,从而得到指数函数概念的本质属性,抽象出指数函数的概念,发展学生数学抽象的核心素养.例1:已知指数函数fx=ax(a0,且a1),且f3=,求f0,f1, f3的值.师生活动:教师引导学生,要求出f0,f1, f3的值,应先求出fx=ax的解析式,即先求出a的值.而已知f3=,可由此求出a的值.设计意图:通过求函数解析式,并根据解析式求出不同的函数值,从指数函数的对应关系和变化规律

7、的角度理解指数函数的概念.例2:(1)在问题1中,如果平均每位游客出游一次可给当地带来1000元门票之外的收入,A地景区的门票价格为150元,比较这15年间A,B两地旅游收入变化情况.(2)在问题2中,某生物死亡10000年后,它体内碳14的含量衰减为原来的百分之几?师生活动:(1)教师引导学生得出A、B两地旅游收入的函数fx和g(x),教师利用geogebra画出图象,得出交点坐标,进而得出两地收入的变化情况.(2)利用geogebra进行计算第(2)小问.(3)教师指出:在实际问题中,经常会遇到类似于例2(1)的指数增长模型:设原有量为N,每次的增长率为p(p0),经过x次增长,该量增长到

8、y,则y=N(1+p)x,其中表示增长率;还可以表示为y=N(1p)x,其中p(p0)表示衰减率.形如y=kax(xR,且k0;a0,且a1)的函数是刻画指数增长或指数衰减变化规律的函数模型.设计意图:在引入概念的两个实例基础上,利用指数函数概念进一步解决与两个实例有关的问题,从而巩固对概念的理解.问题6:回顾本节课的学习内容,并回答以下问题:(1)我们是怎样通过实例问题1,问题2得出指数函数的?(2)指数函数的定义是什么?设计意图:回顾本节课的主要知识和研究过程,巩固指数函数概念的理解.(五)目标检测设计1、课堂检测教科书第115页练习1,2,3设计意图:1 ,2题利用函数的三种表示形式,从不同角度推动学生对指数函数概念的理解,进一步明确概念,学会表示指数函数,体会指数增长或衰减;3题考查学生对指数函数概念的理解;三题均属于水平一题目.2. 课后作业教科书第118页习题4.2第1,2,4,7,8题设计意图:考查学生对指数函数概念的理解,1,2,4题属于水平一题目,7,8题属于水平二题目.(六)课后反思

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1