ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:913.38KB ,
资源ID:773892      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-773892-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(4.2 弧度制(教案)(2课时)-【中职专用】高一数学同步精品课堂(高教版2021·基础模块上册).docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

4.2 弧度制(教案)(2课时)-【中职专用】高一数学同步精品课堂(高教版2021·基础模块上册).docx

1、4.2 弧度制教学设计学习目标知识能力与素养 理解弧度制的概念; 理解角度制与弧度制的换算关系.(1)会进行角度制与弧度制的换算;(2)会利用计算器进行角度制与弧度制的换算;(3)培养学生的计算技能与计算工具使用技能学习重难点重点难点弧度制的概念,弧度与角度的换算1弧度角的定义的理解教材分析 本节课起着承上启下的作用:在前面学生在初中已经学过角的度量单位,并且上节课学了任意角的概念,学生已掌握了一些基本单位转换方法,并能体会不同的单位制能给解决问题带来方便;本节课作为三角函数的第二课时,该课的知识还是后继学习任意角的三角函数等知识的理论准备,因此本节课还起着启下的作用.学情分析 在前面的学习中

2、,学生在初中学习了角度制度量角的大小,还学习了角度制下的弧长公式。大部分学生已经熟练掌握了角度值的知识,为学生学习弧度制打下基础,作为高一的学生,学生已具备一些基本数学能力,有了一定的数学素养,这对学习很有帮助.教学工具教学课件课时安排2课时教学过程(一)创设情境,生成问题情境与问题 日常生活中,有些量可以用不同的单位进行度量如,度量温度可以用 (摄氏温度) 、 F (华氏温度) 、 K (热力学温度)等不同单位开尔文温度:T=t+273.15K 摄氏温度:t=T-273.15 华氏温度:F=(9/5)t+32在义务教育阶段, 用角度制来度量角即把一个周角 360等分, 每一份圆弧所对的圆心角

3、就是1的角用角度制度量角用的是六十进制, 而日常的运算多数是十进制, 能否建立一种十进制的度量体系来度量角呢?在半径分别为1cm、2cm、5cm的圆中, 圆周角所对的弧长与半径之比分别为多少?【设计意图】引导学生主动观察思考发现规律,激发学生求知欲.(二)调动思维,探究新知显然,半径分别为1cm、2cm、5cm的圆中, 周长为2cm,周长为4cm,周长为10cm,可见,在不同半径的圆中, 同一度数角的弧长与其半径之比是相等的.在半径为r的圆中,1的圆心角所对的弧长与半径之比为, 因此 x的圆心角所对的弧长 l 与半径之比为. 即 x的圆心角所对的弧长与半径之比仅与角的大小 x 有关. 因此,可

4、以用弧长和半径的比值来表示这个圆弧所对的圆心角的值 规定,弧长等于半径(即) 的圆弧所对的圆心角称为弧度的角. 记作“1rad” (读作“1 弧度”) 以“弧度”为单位来度量角的制度称为弧度制 .同时规定,正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是零.半径为r的圆中, 长度为l的圆弧所对的圆心角的大小为, 那么. ,其中,角的正负由角的终边的旋转方向决定.因为半径为r的圆的周长是2r,所以周角的弧度数是,故有 360=2 rad 或 180= rad.由此可得弧度制与角度制的换算公式:【设计意图】通过观察与思考参与概念形成,感觉知识形成乐趣.温馨提示 用弧度制表示角时,可以省略单位

5、“rad”如“2rad”可以写成“2” 但是,在用角度制表示角时,不能省略单位“”. (三)巩固知识,典例练习【典例1】把100转换为弧度.解 100=(100)【典例2】 把转化成角度.解 【典例3】扇形的圆心角为(02) ,半径为r,弧长为l,扇形面积为S,求证:(1) l=r ; (2) 证明 (1)因为,而02,所以,即l=r(2)因为圆心角为1 rad的扇形面积为所以圆心角为的扇形面积为【典例4】 利用科学型计算器进行角度与弧度的转换:(1)把6730转换为弧度(保留到小数点后第2位);(2)把3.14rad转换为角度(保留到小数点后第2位)分析 利用科学型计算器进行角度与弧度的转换

6、时,应先确定角的度量单位设置角的度量单位为“度”或“弧度”的方法是:依次按键:SHIFTMODE SETUP3(角度制模式)或4(弧度制模式).(1)第一步:将科学型计算器设为弧度制模式:第二步:输入6730,并把它转换为弧度:结果显示1.178097245因此, 67301.18rad(2)第一步:将科学型计算器设为角度制模式:第二步:输入3.14rad,并把它转换为角度:结果显示179.9087477因此, 3.14 rad179.91温馨提示一些特殊角的角度值和弧度值的对应关系:03045609012013515018027036002【设计意图】巩固角度与弧度转化常用方法,以证明题方式

7、给出弧度制下弧长和扇形面积公式.(四)巩固练习,提升素养【巩固1】把下列各角度换算为弧度(精确到0001): 15; 830; 100分析 角度制换算为弧度制利用公式1=解 ; ; 【巩固2】把下列各弧度换算为角度(精确到1): ; 2.1; 3.5分析 弧度制换算角度制利用公式解 ; 3.5【设计意图】通过练习及时掌握学生的知识掌握情况,查漏补缺(五)巩固练习,提升素养1把下列角度转换为弧度 (1)22; (2) 210; (3) 12002把下弧度转换为角度 3经过4h,时钟的时针和分针各转了多少度,转换为弧度是多少?4用弧度制表示终边在x轴上的角的集合. 5已知一个扇形的半径为10 cm,圆心角为1.2rad,求该扇形的弧长和面积【设计意图】通过练习及时掌握学生的知识掌握情况,查漏补缺(六)课堂小结,反思感悟 1.知识总结:2.自我反思:(1)通过这节课,你学到了什么知识? (2)在解决问题时,用到了哪些数学思想与方法? (3)你的学习效果如何?需要注意或提升的地方有哪些? 【设计意图】培养学生反思学习过程的能力(七)作业布置,继续探究(1)读书部分: 教材章节4.2;(2)书面作业: P137习题4.2的1,2,3,4.(八)教学反思

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1