ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:99.56KB ,
资源ID:773664      下载积分:5 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-773664-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(4.1 第1课时三角形的内角和教案.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

4.1 第1课时三角形的内角和教案.docx

1、41认识三角形第1课时三角形的内角和1理解三角形内角和定理及其验证方法,能够运用其解决一些简单问题;(重点)2理解直角三角形的相关性质并能够运用其解决问题一、情境导入(三兄弟之争)在一个直角三角形村庄里,住着三个内角,平时他们非常团结,有一天,老三不高兴了,对老大说“凭什么你的度数最大,我也要和你一样大!”老大说:“这是不可能的,否则我们这个家就要被拆散,围不起来了!”“为什么呢?”老二、老三纳闷起来同学们,你们知道其中的道理吗?二、合作探究探究点一:三角形的内角和【类型一】 求三角形内角的度数 已知,如图,D是ABC中BC边延长线上一点,F为AB上一点,直线FD交AC于E,DFB90,A46

2、,D50.求ACB的度数解析:在DFB中,根据三角形内角和定理,求得B的度数,再在ABC中求ACB的度数即可解:在DFB中,DFB90,D50,DFBDB180,B40.在ABC中,A46,B40,ACB180AB94.方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解【类型二】 判断三角形的形状 一个三角形的三个内角的度数之比为123,这个三角形一定是()A直角三角形 B锐角三角形C钝角三角形 D无法判定解析:设这个三角形的三个内角的度数分别是x,2x,3x,根据三角形的内角和为180,得x2x3x180,解得x30

3、,这个三角形的三个内角的度数分别是30,60,90,即这个三角形是直角三角形故选A.方法总结:判断三角形的形状,可从角的大小来判断,根据三角形的内角和及角之间的关系列出相关方程式求解即可探究点二:直角三角形的两个锐角互余 如图,CEAF,垂足为E,CE与BF相交于点D,F40,C30,求EDF、DBC的度数解析:根据直角三角形两锐角互余列式计算即可求出EDF,再根据三角形的内角和定理求出CDBCFDEF,然后求解即可解:CEAF,DEF90,EDF90F904050.由三角形的内角和定理得CDBCCDBFDEFEDF,又CDBEDF,30DBC4090,DBC100.方法总结:本题主要利用了“

4、直角三角形两锐角互余”的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键三、板书设计1三角形的内角和定理:三角形的内角和等于180.2三角形内角和定理的证明3直角三角形的性质:直角三角形两锐角互余 本节课通过一段对话设置疑问,巧设悬念,激发起学生获取知识的求知欲,充分调动学生学习的积极性,使学生由被动接受知识转为主动学习,从而提高学习效率然后让学生自主探究,在教学过程中充分发挥学生的主动性,让学生提出猜想在教学中,教师通过必要的提示指明学生思考问题的方向,在学生提出验证三角形内角和的不同方法时,教师注意让学生上台演示自己的操作过程和说明自己的想法,这样有助于学生接受三角形的内角和是180这一结论。

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1