ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:95KB ,
资源ID:77238      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-77238-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(《创新方案》2017届高考数学(理)一轮复习课后作业:第十二章第三节 数学归纳法 WORD版含解析.DOC)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

《创新方案》2017届高考数学(理)一轮复习课后作业:第十二章第三节 数学归纳法 WORD版含解析.DOC

1、一、选择题1已知f(n),则()Af(n)中共有n项,当n2时,f(2)Bf(n)中共有n1项,当n2时,f(2)Cf(n)中共有n2n项,当n2时,f(2)Df(n)中共有n2n1项,当n2时,f(2)2某个命题与自然数n有关,若nk(kN*)时命题成立,那么可推得当nk1时该命题也成立,现已知n5时,该命题不成立,那么可以推得()An6时该命题不成立 Bn6时该命题成立Cn4时该命题不成立 Dn4时该命题成立3用数学归纳法证明不等式1(nN*)成立,其初始值至少应取()A7 B8 C9 D104凸n边形有f(n)条对角线,则凸n1边形的对角线的条数f(n1)为()Af(n)n1 Bf(n)

2、nCf(n)n1 Df(n)n25利用数学归纳法证明“(n1)(n2) (nn)2n13(2n1),nN*”时,从“nk”变到“nk1”时,左边应增乘的因式是()A2k1 B2(2k1)C. D.二、填空题6用数学归纳法证明11),第一步要证的不等式是_7用数学归纳法证明“当n为正奇数时,xnyn能被xy整除”,当第二步假设n2k1(kN*)命题为真时,进而需证n_时,命题亦真8用数学归纳法证明123n2,则当nk1时左端应在nk的基础上加上的项为_三、解答题9求证:1(nN*)10用数学归纳法证明:1的过程中,由nk推导nk1时,不等式的左边增加的式子是_4已知函数f(x)x3x,数列an满

3、足条件:a11,an1f(an1),试比较与1的大小,并说明理由答 案一、选择题1解析:选D由f(n)可知,共有n2n1项,且n2时,f(2).2解析:选C因为当nk(kN*)时命题成立,则当nk1时,命题也成立现已知n5时,命题不成立,故n4时命题也不成立3解析:选B左边12,代入验证可知n的最小值是8.4解析:选C边数增加1,顶点也相应增加1个,它与和它不相邻的n2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n1条5解析:选B当nk(kN*)时,左式为(k1)(k2) (kk);当nk1时,左式为(k11)(k12)(k1k1)(k1k)(k1k1),则左边应增乘的式子是

4、2(2k1)二、填空题6解析:当n2时,左边为11,右边为2.故应填12.答案:127解析:n为正奇数,假设n2k1成立后,需证明的应为n2k1时成立答案:2k18解析:当nk时左端为123k(k1)(k2)k2,则当nk1时,左端为123k2(k21)(k22)(k1)2,故增加的项为(k21)(k22)(k1)2.答案:(k21)(k22)(k1)2三、解答题9证明:(1)当n1时,左边1,右边,左边右边,等式成立(2)假设nk(kN*)时等式成立,即1,则当nk1时,.即当nk1时,等式也成立综合(1),(2)可知,对一切nN*,等式成立10证明:(1)当n2时,12,命题成立(2)假设nk(k2,且kN*)时命题成立,即12.当nk1时,12231,由此猜想:an2n1.下面用数学归纳法证明这个猜想:当n1时,a12111,结论成立;假设nk(k1且kN*)时结论成立,即ak2k1.当nk1时,由g(x)(x1)21在区间1,)上是增函数知ak1(ak1)2122k12k11,即nk1时,结论也成立由知,对任意nN*,都有an2n1.即1an2n,1n1.

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3