ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:18.79KB ,
资源ID:770108      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-770108-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(24.3 正多边形和圆.docx)为本站会员(a****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至kefu@ketangku.com或直接QQ联系客服),我们立即给予删除!

24.3 正多边形和圆.docx

1、24.3正多边形和圆教学目标【知识与技能】1.了解正多边形的定义;2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系,并能应用它们进行有关的计算;3.会应用正多边形和圆的有关关系画正多边形.【过程与方法】学习借助圆来研究正多边形这一数学方法,通过转化,用解直角三角形来研究圆内接正多边形,培养学生探索、推理、归纳、迁移等能力.【情感、态度与价值观】学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体现了事物之间的相互联系与相互作用.教学重难点【教学重点】探索正多边形和圆的关系,弄清正多边形半径、中心角、边心距和边长之间的关系.【教学难点】利用圆研究正多边形,化正多边

2、形问题为解直角三角形问题.教学过程一、情境导入我国国旗上的五角星及正六边形、正三角形等许多图形都可以利用圆的有关知识画出来,早在古代,就有人用直尺和圆规作出正三角形、正方形及正五边形了,可是利用尺规却无法作出正七边形或正十一边形,许多先人的尝试都以失败告终,这种局面持续了2019多年.1796年,年仅19岁的数学家高斯解决了这个问题,成为轰动数学界的伟大成就.目前,对于正多边形的研究,我们经常借助圆来讨论,那么它们之间有怎样的联系呢?二、合作探究探究点1正多边形的有关概念及性质典例1已知正六边形的半径为R,求正六边形的边长、边心距和面积.解析如图,边长a6=AB,半径OA=R,作OMAB于M,

3、设边心距OM=r,在RtAOM中,正六边形的中心角为60,AOM=30,OA=2AM,而AB=2AM,AB=OA=R.r=R2-12R2=32R.S=6SAOB=612ABOM=332R2.有关正多边形的计算,都要作出它的半径和边心距为辅助线,从而将问题转化为解直角三角形的问题.变式训练半径为2的圆内接正三角形、正四边形、正六边形的边心距之比为.答案123探究点2画正多边形典例2(1)画一个半径为2 cm的圆的内接正七边形;(2)画一个半径为3 cm的圆的内接正十二边形.解析(1)作法:在半径为2 cm的O中,用量角器画=360751,这个角所对的弧就是圆的17,然后在圆上依次截取等弧来7等分

4、圆,就得到圆的7等分点,顺次连接这7个等分点,就得到半径为2 cm的圆的内接正七边形(如图1).(2)作法:在半径为3 cm的O上,以半径的长在圆上依次截取弦长等于半径的弧,再作各弧的相应弦的垂直平分线,各平分线与圆相交,这些点和前面的6等分圆的点就把圆12等分,依次连接各等分点,就得到半径为3 cm的圆接正十二边形(如图2).(1)不管用什么方法画正多边形,关键是将圆进行等分.用量角器等分时,其画法的根据是:正n边形的圆心角都等于360n.(2)用量角器等分圆周是一种简单而常用的方法,它适用于画任意正多边形,但作的是近似图形;尺规作图法是一种比较准确的等分圆的方法,但有很大的局限性,不能将圆

5、任意等分,它只适应于作某些特殊的正多边形.如正三边形、六边形、十二边形、二十四边形、正四边形、正八边形、正十六边形等.变式训练如图,已知半径为R的O,用多种工具多种作法作出它的圆内接正三角形.解析方法一:(1)用量角器画圆心角AOB=120,BOC=120;(2)连接AB,BC,CA,则ABC为圆内接正三角形,如图1所示.方法二:(1)用量角器画圆心角BOC=120;(2)在O上用圆规截取AC=BC;(3)连接AC,BC,CA,则ABC为圆内接正三角形,如图2所示.方法三:(1)作直径AD;(2)以D为圆心,以OA为半径画弧,交O于B,C;(3)连接AB,BC,CA,则ABC为圆内接正三角形,如图3所示.三、板书设计正多边形与圆1.正多边形计算有关正多边形的计算,都要作出它的半径和边心距为辅助线,从而将问题转化为解直角三角形的问题.2.画正多边形方法:(1)用量角器平分圆心角(可作任一正多边形);(2)尺规作特殊的正多边形(正三、四、六、八、十二、二十四边形等).教学反思本节课一开始,通过观看图案,欣赏生活中的正多边形,让学生感受到数学来源于生活,并从中感受到数学美,同时提出本课所要研究的问题,激发了学生的好奇心和求知欲.

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1