ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:272KB ,
资源ID:769870      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-769870-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2014版高考数学一轮复习(苏教版理)配套导学案:第11章 学案61.doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

2014版高考数学一轮复习(苏教版理)配套导学案:第11章 学案61.doc

1、学案61排列与组合导学目标: 1.理解排列、组合的概念.2.能利用计数原理推导排列数公式、组合数公式.3.能解决简单的实际问题自主梳理1排列的定义:_.排列数的定义:_,叫做从n个不同元素中取出m个元素的排列数,用符号A表示说明:n!_,叫做n的阶乘;规定0!_;当mn时的排列叫做全排列,全排列数A_.2排列数公式的两种形式:(1)An(n1)(nm1),(2)A,其中公式(1)(不带阶乘的)主要用于计算;公式(2)(阶乘形式)适用于化简、证明、解方程3组合的定义:从n个不同元素中取出m(mn)个元素并成一组,叫做_从n个不同元素中取出m(mn)个元素的所有组合的个数叫做从n个不同元素中取出m

2、个元素的_,用_表示4组合数公式的两种形式:(1)C;(2)C,其中公式(1)主要用于计算,尤其适用于上标是具体数且m的情况,公式(2)适用于化简、证明、解方程等5CC_,m、kN,nN*.6组合数的两个性质:(1)C_,(2)C_.自我检测1(2010北京改编)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为_(用式子表示)2(2010广州期末七区联考)2010年上海世博会某国展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该国展出这5件作品的不同方案有_种32008年9月

3、25日晚上4点30分,“神舟七号”载人飞船发射升空,某校全体师生集体观看了电视实况转播,观看后组织全体学生进行关于“神舟七号”的论文评选,若三年级文科共4个班,每班评出2名优秀论文(其中男女生各1名)依次排成一列进行展览,若规定男女生所写论文分别放在一起,则不同的展览顺序有_种4(2010全国改编)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有_种5(2010重庆改编)某单位拟安排6位员工在6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天若6位员工中的甲不值14日,乙不值16日,则不同的安排方

4、法共有_种.探究点一含排列数、组合数的方程或不等式例1(1)求等式3中的n值;(2)求不等式6A.探究点二排列应用题例2六人按下列要求站一排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻; (4)甲、乙之间恰间隔两人;(5)甲、乙站在两端; (6)甲不站左端,乙不站右端变式迁移2用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,求这样的六位数的种数探究点三组合应用题例3男运动员6名,女运动员4名,其中男女队长各1名,选派5人外出比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至

5、少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员变式迁移312名同学合影,站成前排4人后排8人,现摄影师从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法总数是_1解排列、组合应用题应遵循两个原则:一是按元素的性质进行分类;二是按事件发生的过程进行分步2对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数3关于排列、组合问题的求解,应掌握以下基本方

6、法与技巧:(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列组合综合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价转化(满分:90分)一、填空题(每小题6分,共48分)1在数字7,8,9与符号“”,“”五个元素的所有全排列中,任意两个数字不相邻的全排列个数是_2(2009湖南改编)从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为_3(2010全国改编)某校开设A类选修课3门,B类选修课4门,一位同

7、学从中共选3门若要求两类课程中各至少选一门,则不同的选法共有_种4(2010重庆改编)某单位安排7位员工在10月1日至7日值班,每天安排一人,每人值班1天若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有_种56条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条网线且使这三条网线通过最大信息量的和大于等于6的方法共有_种6(2011北京)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有_个(用数字作答)78名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的

8、第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐3、4名,则大师赛共有_场比赛8参加海地地震救援的中国救援队一小组共有8人,其中男同志5人,女同志3人现从这8人中选出3人参加灾后防疫工作,要求在选出的3人中男、女同志都有,则不同的选法共有_种(用数字作答)二、解答题(共42分)9(14分)(1)计算CC199200;(2)求CC的值;(3)求证:CCC.10(14分)有5个男生和3个女生,从中选出5人担任5门不同学科的课代表,求分别符合下列条件的选法数(1)有女生但人数必须少于男生;(2)某女生一定担任语文课代表;(3)某男生必须包括在内,但不担任语文课代表;(4)某女生一定要担

9、任语文课代表,某男生必须担任课代表,但不担任数学课代表11(14分)从1,3,5,7,9五个数字中选2个,0,2,4,6,8五个数字中选3个,能组成多少个无重复数字的五位数?学案61排列与组合答案自主梳理1从n个不同的元素中取出m (mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列从n个不同元素中取出m (mn)个元素的所有排列的个数n(n1)211n!3.从n个不同元素中取出m个元素的一个组合组合数C5mk或mkn6.(1)C(2)CC自我检测1AA解析不相邻问题用插空法,先排学生有A种排法,老师插空有A种方法,所以共有AA种排法224解析2件书法作品看作一个

10、元素和标志性建筑设计进行排列有A种不同排法,让2件绘画作品插空有A种插法,2件书法作品之间的顺序也可交换,因此共有2AA24(种)31 152解析女生论文有A种展览顺序,男生论文也有A种展览顺序,男生与女生论文可以交换顺序,有A种方法,故总的展览顺序有AAA1 152(种)418解析先将1,2捆绑后放入信封中,有C种方法,再将剩余的4张卡片放入另外两个信封中,有CC种方法,所以共有CCC18(种)方法542解析若甲在16日值班,在除乙外的4人中任选1人在16日值班有C种选法,然后14日、15日有CC种安排方法,共有CCC24(种)安排方法;若甲在15日值班,乙在14日值班,余下的4人共有CCC

11、12(种)安排方法;若甲、乙都在15日值班,则共有CC6(种)安排方法所以总共有2412642(种)安排方法课堂活动区例1解题导引(1)在解有关A、C的方程或不等式时要注意运用nm且m、nN*的条件;(2)凡遇到解排列、组合的方程式、不等式问题时,应首先应用性质和排列、组合的意义化简,然后再根据公式进行计算注意最后结果都需要检验解(1)原方程可变形为1,CC,即,化简整理得n23n540,解得n9或n6(不合题意,舍去),n9.(2)由,可得n211n120,解得1n12.又nN*且n5,n5,6,7,8,9,10,11变式迁移1解(1)根据原方程,x (xN*)应满足解得x3.根据排列数公式

12、,原方程化为(2x1)2x(2x1)(2x2)140x(x1)(x2),因为x3,两边同除以4x(x1),得(2x1)(2x1)35(x2),即4x235x690,解得x3或x (xN*,应舍去)所以原方程的解为x3.(2)根据原不等式,x (xN*)应满足故26A,得6,所以1,所以75x9.故2x8,所以x3,4,5,6,7,8例2解题导引(1)求排列应用题最基本的方法有直接法:把符合条件的从正面考虑解决,直接列式计算;间接法:根据正难则反的解题原则,如果问题从正面考虑情况比较多,容易重或漏,那么从整体中去掉不符合题意的情况,就得到满足题意的排列种数(2)相邻问题,一般用捆绑处理的方法(3

13、)不相邻问题,一般用插空处理的方法(4)分排问题,一般用直排处理的方法(5)“小集团”排列问题中,先整体后局部的处理方法解(1)方法一要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A种站法,然后其余5人在另外5个位置上作全排列,有A种站法,根据分步计数原理,共有AA480(种)站法方法二若对甲没有限制条件共有A种站法,甲在两端共有2A种站法,从总数中减去这两种情况的排列数即得所求的站法数,共有A2A480(种)站法(2)先把甲、乙作为一个“整体”,看作一个人,有A种站法,再把甲、乙进行全排列,有A种站法,根据分步计数原理,共有AA240(种)站法(3)因为甲、乙不相邻,所以可用“插空法

14、”第一步,先让甲、乙以外的4个人站队,有A种站法;第二步,再将甲、乙排在4人形成的5个空档(含两端)中,有A种站法,故共有AA480(种)站法(4)先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有A种;然后把甲、乙及中间2人看作一个“大”元素与余下2人作全排列,有A种站法;最后对甲、乙进行排列,有A种站法,故共有AAA144(种)站法(5)首先考虑特殊元素,甲、乙先站两端,有A种站法,再让其他4人在中间位置作全排列,有A种站法,根据分步计数原理,共有AA48(种)站法(6)甲在左端的站法有A种站法,乙在右端的站法有A种,且甲在左端而乙在右端的站法有A种站法,共有A2AA504(种

15、)站法变式迁移2解依题意先排列除1和2外的剩余4个元素有2AA8(种)方案,再向这排好的4个元素中选1空位插入1和2捆绑的整体,有A种插法,不同的安排方案共有2AAA40(种)例3解题导引(1)区别排列与组合的重要标志是“有序”与“无序”,无序的问题,用组合解答,有序的问题属排列问题(2)解组合问题时,常遇到“至多”、“至少”问题,解决的方法常常用间接法比较简单,计算量也较小;用直接法也可以解决,但分类要恰当,特别对限制条件比较多的问题解(1)第一步:选3名男运动员,有C种选法第二步:选2名女运动员,有C种选法共有CC120(种)选法(2)“至少1名女运动员”的反面为“全是男运动员”从10人中

16、任选5人,有C种选法,其中全是男运动员的选法有C种所以“至少有1名女运动员”的选法有CC246(种)(3)从10人中任选5人,有C种选法其中不选队长的方法有C种所以“至少1名队长”的选法有CC196(种)(4)当有女队长时,其他人选法任意,共有C种选法不选女队长时,必选男队长,共有C种选法其中不含女运动员的选法有C种,所以不选女队长时共有CC种选法故既要有队长,又要有女运动员的选法有CCC191(种)变式迁移3840解析从后排8人中选2人有C种,这2人插入前排4人中且前排人的顺序不变,则先从4人中的5个空位插一人有5种;余下的一人则要插入前排5人的空档有6种,故为A.所求总数为CA840.课后

17、练习区112解析在数字7,8,9与符号“”,“”五个元素的所有排列中,先排“”,“”两个符号,有A2(种)方法;“”,“”这两个符号排好后就产生三个空位,再将7,8,9插入这三个空位中,有A6(种)排法,共有AA12(种)方法249解析丙不入选的选法有C84(种),甲乙丙都不入选的选法有C35(种)所以甲、乙至少有一人入选,而丙不入选的选法有843549(种)330解析方法一可分两种情况:A类选1门,B类选2门或A类选2门,B类选1门,共有CCCC181230(种)选法方法二总共有C35(种)选法,减去只选A类的C1(种),再减去只选B类的C4(种),故有30种选法41 008解析不考虑丙、丁

18、的情况共有AA1 440(种)排法在甲、乙相邻的条件下,丙排10月1日有AA240(种)排法,同理,丁排10月7日也有240种排法丙排10月1日,丁排10月7日也有AA48(种)排法,则满足条件的排法有AA2AAAA1 008(种)515解析当选用信息量为4的网线时有C种;当选用信息量为3的网线时有CC1种,共CCC115(种)614解析数字2,3至少都出现一次,包括以下情况:“2”出现1次,“3”出现3次,共可组成C4(个)四位数“2”出现2次,“3”出现2次,共可组成C6(个)四位数“2”出现3次,“3”出现1次,共可组成C4(个)四位数综上所述,共可组成14个这样的四位数716解析每组有

19、C场比赛,两组共有2C场,每组的第一名与另一组的第二名比赛有2场,决出冠军和第3名各1场,所以共有2C21116(场)845解析从3名女同志和5名男同志中选出3人,分别参加灾后防疫工作,若这3人中男、女同志都有,则从全部方案中减去只选派女同志的方案数C,再减去只选派男同志的方案数C,合理的选派方案共有CCC45(种)9(1)解CCCC2004 9502005 150.(4分)(2)解即又nN*,n7,CC2.(9分)(3)证明CC;(11分)CC,(13分)CCC.(14分)10解(1)先取后排,先取可以是2女3男,也可以是1女4男,先取有CCCC种,后排有A种,共有(CCCC)A5 400(

20、种)(3分)(2)除去该女生后,先取后排CA840(种)(6分)(3)先取后排,但先安排该男生,有CCA3 360(种)(10分)(4)先从除去该男生和该女生的6人中选3人有C种,再安排该男生有C种,其余3人全排有A种,共有CCA360(种)(14分)11解从1,3,5,7,9五个奇数中选出2个,再从2、4、6、8四个偶数中再选出3个,排成五位数,有CCA1041204 800个(6分)从5个奇数中选出2个,再从2、4、6、8四个偶数中再选出2个,将选出的4个数再选一个做万位数余下的3个数加上0排在后4个数位上,有CCCA1064245 760个(12分)由分类计数原理可知这样的五位数共有CCACCCA10 560个. (14分)

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3