ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:121.50KB ,
资源ID:764818      下载积分:8 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.ketangku.com/wenku/file-764818-down.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文((全国版)2021届高考数学二轮复习 专题检测(二十)导数的几何意义及简单应用(文含解析).doc)为本站会员(高****)主动上传,免费在线备课命题出卷组卷网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知免费在线备课命题出卷组卷网(发送邮件至service@ketangku.com或直接QQ联系客服),我们立即给予删除!

(全国版)2021届高考数学二轮复习 专题检测(二十)导数的几何意义及简单应用(文含解析).doc

1、专题检测(二十) 导数的几何意义及简单应用A组“633”考点落实练一、选择题1.已知函数f(x)的导函数f(x)满足下列条件:f(x)0时,x2;f(x)0时,1x2;f(x)0时,x1或x2.则函数f(x)的大致图象是()解析:选A根据条件知,函数f(x)在(1,2)上是减函数.在(,1),(2,)上是增函数,故选A.2.设函数f(x)xex1,则()A.x1为f(x)的极大值点B.x1为f(x)的极小值点C.x1为f(x)的极大值点D.x1为f(x)的极小值点解析:选D由题意得,f(x)(x1)ex,令f(x)0,得x1,当x(,1)时,f(x)0,当x(1,)时,f(x)0,则f(x)在

2、(,1)上单调递减,在(1,)上单调递增,所以x1为f(x)的极小值点,故选D.3.已知直线ykx2与曲线yxln x相切,则实数k的值为()A.ln 2B.1C.1ln 2 D.1ln 2解析:选D由yxln x知yln x1,设切点为(x0,x0ln x0),则切线方程为yx0ln x0(ln x01)(xx0),因为切线ykx2过定点(0,2),所以2x0ln x0(ln x01)(0x0),解得x02,故k1ln 2,选D.4.若x 是函数f(x)(x22ax)ex的极值点,则函数yf(x)的最小值为()A.e B.0C.e D.e解析:选Cf(x)(x22ax)ex,f(x)(2x2

3、a)ex(x22ax)exx22(1a)x2aex,由已知得,f0,所以222a2a0,解得a1.所以f(x)(x22x)ex,所以f(x)(x22)ex,所以函数的极值点为,当x时,f(x)0;所以函数yf(x)是减函数,当x或x时,f(x)0,函数yf(x)是增函数.又当x(,0)(2,)时,x22x0,f(x)0,当x(0,2)时,x22x0,f(x)0,所以f(x)min在x(0,2)上,又当x时,函数yf(x)递减,当x时,函数yf(x)递增,所以f(x)minfe.5.已知函数f(x)(2xln xa)ex在(0,)上单调递增,则实数a的最大值是()A.5ln 2 B.52ln 2

4、C.2ln 2 D.52ln 2解析:选Af(x)(2xln xa)ex,f(x)(2xln x2a)ex,x(0,).依题意,知x(0,)时,f(x)0恒成立,即a2xln x2在(0,)上恒成立.设g(x)2xln x2,则g(x)2,x(0,).令g(x)0,得x或x1(舍去).令g(x)0,则0x,令g(x)0,则x,当x时,函数g(x)取得最小值,g(x)ming5ln 2,a5ln 2,即实数a的最大值是5ln 2.故选A.6.已知函数f(x)为偶函数,当x0时,f(x)4x,设af(log30.2),bf(30.2),cf(31.1),则()A.cab B.abcC.cba D.

5、bac解析:选A因为函数f(x)为偶函数,所以af(log30.2)f(log30.2),cf(31.1)f(31.1).因为log3log30.2log3,所以2log30.21,所以1log30.22,所以31.13log30.2130.2.因为y在(0,)上为增函数,y4x在(0,)上为增函数,所以f(x)在(0,)上为增函数,所以f(31.1)f(log30.2)f(30.2),所以cab,故选A.二、填空题7.(2019江苏高考)在平面直角坐标系xOy中,点A在曲线yln x上,且该曲线在点A处的切线经过点(e,1)(e为自然对数的底数),则点A的坐标是_.解析:设A(m,n),则曲

6、线yln x在点A处的切线方程为yn(xm).又切线过点(e,1),所以有n1(me).再由nln m,解得me,n1.故点A的坐标为(e,1).答案:(e,1)8.若函数f(x)xaln x不是单调函数,则实数a的取值范围是_.解析:由题意知f(x)的定义域为(0,),f(x)1,要使函数f(x)xaln x不是单调函数,则需方程10在(0,)上有解,即xa,a0.答案:(,0)9.设定义在R上的函数yf(x)的导函数为f(x).如果存在x0a,b,使得f(b)f(a)f(x0)(ba)成立,则称x0为函数f(x)在区间a,b上的“中值点”.那么函数f(x)x33x在区间2,2上的“中值点”

7、为_.解析:由f(x)x33x求导可得f(x)3x23,设x0为函数f(x)在区间2,2上的“中值点”,则f(x0)1,即3x31,解得x0.答案:三、解答题10.已知函数f(x)x2axaln x.(1)若曲线yf(x)在x2处的切线与直线x3y20垂直,求实数a的值;(2)若函数f(x)在2,3上单调递增,求实数a的取值范围.解:(1)f(x)2xa(x0),依题意有f(2)3,a2.(2)依题意有2x2axa0在x2,3上恒成立,即a在2,3上恒成立,0(x2,3), y在2,3上单调递减,当x2,3时,8,实数a的取值范围为8,).11.(2019重庆市七校联合考试)设函数f(x),g

8、(x)a(x21)ln x(aR,e为自然对数的底数).(1)证明:当x1时,f(x)0;(2)讨论g(x)的单调性.解:(1)证明:f(x),令s(x)ex1x,则s(x)ex11,当x1时,s(x)0,所以s(x)在(1,)上单调递增,又s(1)0,所以s(x)0,从而当x1时,f(x)0.(2)g(x)2ax(x0),当a0时,g(x)0,g(x)在(0,)上单调递减,当a0时,由g(x)0得x .当x时,g(x)0,g(x)单调递减,当x时,g(x)0,g(x)单调递增.12.已知函数f(x)asin xbcos x(a,bR),曲线yf(x)在点处的切线方程为yx.(1)求a,b的值

9、;(2)求函数g(x)在上的最小值.解:(1)由切线方程知,当x时,y0,所以fab0.因为f(x)acos xbsin x.所以由切线方程知,fab1,所以a,b.(2)由(1)知,f(x)sin xcos xsin,所以函数g(x),g(x),设u(x)xcos xsin x,则u(x)xsin x0,故u(x)在上单调递减,所以u(x)u(0)0,即g(x)0在上恒成立,所以g(x)在上单调递减,所以函数g(x)在上的最小值为g.B组大题专攻强化练1.设f(x)xln xax2(2a1)x,aR.(1)令g(x)f(x),求g(x)的单调区间;(2)已知f(x)在x1处取得极大值,求实数

10、a的取值范围.解:(1)由f(x)ln x2ax2a,可得g(x)ln x2ax2a,x(0,).则g(x)2a.当a0时,x(0,)时,g(x)0,函数g(x)单调递增;当a0时,x时,g(x)0,函数g(x)单调递增,x时,g(x)0,函数g(x)单调递减.所以当a0时,g(x)的单调增区间为(0,),当a0时,g(x)的单调增区间为,单调减区间为.(2)由(1)知,f(1)0.当a0时,f(x)单调递增,所以当x(0,1)时,f(x)0,f(x)单调递减;当x(1,)时,f(x)0,f(x)单调递增.所以f(x)在x1处取得极小值,不符合题意.当0a时,1,由(1)知f(x)在内单调递增

11、,可得当x(0,1)时,f(x)0,x时,f(x)0.所以f(x)在(0,1)内单调递减,在内单调递增,所以f(x)在x1处取得极小值,不符合题意.当a时,1,f(x)在(0,1)内单调递增,在(1,)内单调递减,所以当x(0,)时,f(x)0,f(x)单调递减,不符合题意.当a时,01,当x时,f(x)0,f(x)单调递增,当x(1,)时,f(x)0,f(x)单调递减,所以f(x)在x1处取得极大值,符合题意.综上可知,实数a的取值范围为a.2.已知函数f(x)x2axln x(aR).(1)若函数f(x)是单调递减函数,求实数a的取值范围;(2)若函数f(x)在区间(0,3)上既有极大值又

12、有极小值,求实数a的取值范围.解:(1)f(x)2xa(x0),因为函数f(x)是单调递减函数,所以f(x)0在(0,)恒成立,所以2x2ax10在(0,)恒成立,即a2x对(0,)恒成立,因为2x22,所以a2.(2)因为函数f(x)在(0,3)上既有极大值又有极小值,所以f(x)0在(0,3)上有两个相异实根,即2x2ax10在(0,3)上有两个相异实根,令g(x)2x2ax1,则得即2a.所以实数a的取值范围是.3.(2019全国卷)已知函数f(x)2x3ax22.(1)讨论f(x)的单调性;(2)当0a0,则当x(,0)时,f(x)0,当x时,f(x)0,故f(x)在(,0),单调递增

13、,在单调递减;若a0,f(x)在(,)单调递增;若a0,当x时,f(x)0,故f(x)在,(0,)单调递增,在单调递减.(2)当0a3时,由(1)知,f(x)在单调递减,在单调递增,所以f(x)在0,1的最小值为f2,最大值为f(0)2或f(1)4a.于是m2,M所以Mm当0a2时,可知2a单调递减,所以Mm的取值范围是.当2a3时,单调递增,所以Mm的取值范围是.综上,Mm的取值范围是.4.已知常数a0,f(x)aln x2x.(1)当a4时,求f(x)的极值;(2)当f(x)的最小值不小于a时,求实数a的取值范围.解:(1)由已知得f(x)的定义域为x(0,),f(x)2.当a4时,f(x).当0x2时,f(x)2时,f(x)0,即f(x)单调递增.f(x)只有极小值,且在x2时,f(x)取得极小值f(2)44ln 2.(2)f(x),当a0,x(0,)时,f(x)0,即f(x)在x(0,)上单调递增,没有最小值;当a0得,x,f(x)在上单调递增;由f(x)0得,x,f(x)在上单调递减.当a0时,f(x)的最小值为faln2.根据题意得faln2a,即aln(a)ln 20.a0,ln(a)ln 20,解得a2,实数a的取值范围是2,0).

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3