1、最后冲刺【高考预测】1.集合的概念与性质 2.集合与不等式 3.集合的应用 4.简易逻辑5.充要条件 6.集合的运算7.逻辑在集合中的运用 8.集合的工具性9.真假命题的判断 10.充要条件的应用易错点1 集合的概念与性质 1(2012模拟题精选)设全集U=R,集合M=x|x1,P=x|x21,则下列关系中正确的是 ( ) A.M=P BPM C.MP DCUP=【错误答案】 D【错解分析】 忽视集合P中,x-1部分【正确解答】 C x21 x1或x-1故MP 2(2012模拟题精选)设P、Q为两个非空实数集合,定义集合P+Q=a+b|aP,bQ,若P0,2,5,Q=1,2,6,则P+Q中元素
2、的个数是( ) A9 B8 C7 D6【错误答案】 A P中元素与Q中元素之和共有9个 【错解分析】 忽视元素的互异性,即和相等的只能算一个【正确解答】 B P中元素分别与Q中元素相加和分别为1,2,3,4,6,7,8,11共8个 3(2012模拟题精选)设f(n)=2n+1(nN),P=l,2,3,4,5,Q=3,4,5,6,7,记=nN|f(n) P,=nN|f(n) 则(CN) (CN)等于 ( ) A0,3 B1,7 C3,4,5 D1,2,6,7【错误答案】 D PCNQ=6,7QCNP=1,2故选D【错解分析】 未理解集合 的意义.【正确解答】 B =1,3,5=3,5,7CN=1
3、. CN=7故选B 4设A、B、I均为非空集合,且满足ABI,则下列各式中错误的是 ( ) A(CIA)B=I B(CIA) (CIB)=I CA(CIB)= D(CIA)(CIB)= CIB 【错误答案】 因为集合A与B的补集的交集为A,B的交集的补集故选D要重视发挥图示法的作用,充分运用数形结合(数轴,坐标系,文氏图)或特例法解集合与集合的包含关系以及集合的运算问题,直观地解决问题2注意空集的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如AB,则有A=或A 两种可能,此时应分类讨论【变式探究】 1 全集U=R,集合M=1,2,3,4,集合N=,则M(CUN)等于 ( )
4、A4 B3,4 C2,3,4 D 1,2,3,4答案:B 3 设M=x|x4a,aR,N=y|y=3x,xR,则 ( )AMN= BM=NC. MN D. MN 答案:B 解析:M=4 已知集合A=0,2,3,B=x|x=ab,a、bA且ab,则B的子集的个数是 ( )A4 B8 C16 D15 答案:解析:它的子集的个数为22=4。5 设集合M=(x,y)|x=(y+3)|y-1|+(y+3),-y3,若(a,b)M,且对M中的其他元素(c,d),总有ca,则a=_.答案:解析:依题可知,本题等价于求函数不胜数x=f(y)=(y+3).|y-1|+ (y+3)在当1y3时,x=(y+3)(y
5、-1)+(y+3)=y2+3y=(y+)2-易错点 2 集合与不等式1(2012模拟题精选)集合A=,B=x|x-b|a,若“a=1”是“AB”的充分条件,则b的取值范围是 ( )A-2b2 B-2b2C-3b-1 D-2b2【错误答案】 A 当a=l时,A=x|-1x1且B=x|b-1xb+1AB.b-11且b+1-1.故-2b2只有A符合【错解分析】 AB时,在点-1和1处是空心点,故不含等于说明理由【错误答案】 (1)因为f(x)=(xR),所以f(x)=,依题意f(x)0在-1,1上恒成立,即2x2-2ax-40在-1,1上恒成立当x=0时,aR;当0x1时,ax-恒成立,又y=x-在
6、(0,1)上单调递增,所以y=x-的最大值为-1,得a-1,当-1x0时,t恒成立,所以-1,解得m2;当m0时,t恒成立,所以1,解得m-2综上:故不存在实数m,使得不等式m2+tm+1|x1-x2|对任意aA及t-1,1恒成立【错解分析】 (1)讨论x求参数的范围,最后应求参数的交集而不是并集因为x-1,1时,f(x)0恒成立(2)注意对求出的m的值范围求并集而不是交集当m0时,t恒成立,所以1,解得m-2综上:存在实数m,使得不等式m2+tm+1|x1-x2|对任意aA及t-1,1恒成立,m的取值范围是m|m2或m-2(注意对求出的m的取值范围求并集)方法2:方程f(x)=变形为x2-a
7、x-2=0,|x1-x2|=,又-1a1,所以|x1-x2|=的最大值为3,m2+tm+1|x1-x2|对任意aA及t-1,1恒成立等价于m2+tm+13在t-1,1恒成立,令g(t)=tm+m2-2,有g(-1)=m2+m-20,g(1)=m2-m-20,解得m|m2或m-2(注意对求出的m的取值范围求交集)【特别提醒】讨论参数a的范围时,对各种情况得出的参数a的范围,要分清是“或”还是“且”的关系,是“或”只能求并集,是“且”则求交集.【变式探究】1 设x表示不超过x的最大整数,则不等式x2-5x+60的解集为 ( ) A(2,3) B2,3C2,4 D2,4 答案:C 解析:由x2-5x
8、+60,解得2x 3,由x的定义知2x4所选C.2 已知不等式|x-m|1成立的充分非必要条件是,则实数m的取值范围是 ( ) A. B.C. D. 答案:B(2)B=(2a,a2+1),当a1时,则超过2个元素,注意区间端点2(2012模拟题精选)设函数f(x)= -(xR),区间M=a,b(a0f(x)=-1+,f(x)在(0,+)上为减函数,即y=f(x)在a,b上为减函数,y=f(x)的值域为 ,NM=N,MNa,且b,故有无数组解【错解分析】 错误地理解了M=N,只是MN,忽视了M=N,包含MN和NM两层含义 对症下药f(x)=,y=f(x)在a,b上为减函数 y=f(x)的值域为N
9、=y|y=f(x),N表示f(x)的值域-bM=N,,而已知ab,满足题意的a、b不存在,故选A. 3(2012模拟题精选)记函数f(x)=的定义域为A,g(x)=1g(x-a-1)(2a-x)(a1)的定义域为B.(1)求A;(2)若BA,求实数a的取值范围【错误答案】 (1)由2-0,得x-1或x1A=x|x0,得(x-a-1)(x-2a)0a2a,B=(2a,a+1)BA 2a1或a+1-1 a或a-2又a1a-2或a0且2 设集合P=3,4,5,Q=4,5,6,7定义PQ=(a,b)|ap,bQ,则PQ中元素的个数为 ( )A3 B4 C7 D12 答案:D3 已知关于x的不等式0的解
10、集为M. (1)a=4时,求集合M;答案:(1)当a=4时,原不等式可化为,即(2)若3M且5M,求实数a的取值范围答案:由3 由由、得易错点4 简易逻辑 1(2012模拟题精选)对任意实数a、b、c,给出下列命题:“a=b”是“ac=bc”的充要条件;“a+5是无理数”是“a是无理数”的充要条件;“ab”是“a2b2”的充分条件;“a5”是“a3”的必要条件其中真命题的个数是 ( )A1 B2 C3 D4【错误答案】 D【错解分析】 忽视中c=0的情况,中a,b小于0的情况【正确解答】 B 3(2012模拟题精选)设原命题是“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d”,则
11、它的逆否命题是( )A.已知a,b,c,d是实数,若a+cb+d,则ab且cdB.已知a,b,c,d是实数,若a+cb+d,则ab或cdC.若a+cb+d,则a,b,c,d不是实数,且ab,cdD.以上全不对【错误答案】 A【错解分析】 没有分清“且”的否定是“或”,“或”的否定是“且”. 【正确解答】 由函数y=cx在R上单调递减,得0c1的解集为R,所以2c1,得c 如果P真Q假,则0c;如果Q真P假,则c1所以c的取值范围是(0, )1,+【特别提醒】1在判断一个结论是否正确时,若正面不好判断,可以先假设它不成立,再推出矛盾,这就是正难则反2求解范围的题目,要正确使用逻辑连结词,“且”对
12、应的是集合的交集,“或”对应的是集合的并集【变式探究】 1 已知条件P:|x+1|2,条件q:5x-6x2,则p是q的 ( )A.充要条件 B充分但不必要条件C.必要但不充分条件 D.既非充分也非必要条件 答案:解析:p:x1,q:2x3,则q是p的充分但不必要条件,故p是q的充分但不必要条件。2 已知命题p:函数log05(x2+2x+a)的值域为R,命题q:函数y=-(5-2a)x是减函数若p或q为真命题,p且q为假命题,则实数a的取值范围是( ) Aa1 Ba2C1a1a2.若p为真,q为假时,无解;若p为假,q为真时,结果为1a2,故选.3 如果命题P: ,命题Q: ,那么下列结论不正
13、确的是 ( )A.“P或Q”为真 B“P且Q”为假C“非P”为假 D“非Q”为假 答案:B4 已知在x的不等式0x2-46x-13a的解集中,有且只有两个整数,求实数a的取值范围 假命题a的取值范围为易错点5 充要条件1(2012模拟题精选)“m=”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的 ( )A.充分必要条件 B充分而不必要条件C.必要而不充分条件 D既不充分也不必要条件【错误答案】 A【错解分析】 当两直线垂直时,A1A2+B1B2=0,m2-4+3m(m+2)=0,即m=或m=-2;故不是充分必要条件【正确解答】 B 当m=时两直线垂直两
14、直线垂直时m=或m=-2,故选B 2(2012模拟题精选)设定义域为R的函数f(x)=,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是 ( ) Ab0 Bb0且c0 Cb0且c=0 Db0且c=0【错误答案】 B =b2-4ac当c0故f(x)有两个不同实根,x有7个既不充分也不必要条件,所以选D【错解分析】 “或”与“且”理解错误,逻辑中的“或”与生活中的“或”有区别,aM或aN包括三种:aM但aN;aN但a M;aM且aN.所以a(MN)可以推得aM或aN.【正确解答】 a(MN)的意思是aM且aN,而aM或aN包括三种:aM但aN;aN但aM;aM且aN,所以a
15、M或aN不能推出a(MN);a(MN)可以推得aM或aN.所以选B 4(2012模拟题精选)设命题p:关于x的不等式a1x2+b1x+c10与a2x2+b2x+c20的解集相同;命题q:,则命题p是命题g的 ( )A.充分但不必要条件B必要但不充分条件C充要条件D既不充分也不必要条件【错误答案】 因为,所以不等式a1x2+b1x+c10与a2x2+b2x+c20是等价的不等式,解集相同,所以q能推出p而不等式a1x2+b1x+c10与a2x2+ b2x+c20的解集相同不能得出,所以选B题的真假. (2)要理解“充要条件”的概念,对于符号“”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“
16、必须并且只需”,“,反之也真”等 (3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质 (4)从集合观点看,若AB,则A是B的充分条件,B是A的必要条件;若A=B,则A、B互为充要条依.(5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性) 【变式探究】 1 设ab、是非零向量,则使ab=|a|b|成立的一个必要非充分条件是 ( )Aa=b BabCab Da=b(0)答案:解析:由ab=|a| |b|可得ab;但ab, ab=|a| |b|, 故使ab=|a| |b| 成立的一个必
17、要充分条件是:ab.故选.2若条件甲:平面内任一直线平行于平面,条件乙:平面平面,则条件甲是条件乙的 ( )A充分不必要条件B必要不充分条件C. 充要条件D既不充分又不必要条件 4 命题A:|x-1|3,命题B:(x+2)(x+a)0,若A是B的充分不必要条件,则a的取值范围是( )A(4,+) B4,+C(-,-4) D(-,-4)答案:【知识导学】难点1 集合的运算 1设I是全集,非空集合P、Q满足PQI,若含P、Q的一个运算表达式,使运算结果为空集,则这个运算表达式可以是_;如果推广到三个,即PQRI,使运算结果为空集,则这个运算表达式可以是_.(只要求写出一个表达式)【解析】 画出集合
18、P、Q、I的文氏图就可以看出三个集合之间的关系,从它们的关系中构造集合表达式,使之运算结果为空集【答案】 画出集合P、Q、I的文氏图,可得满足PQI,含P、Q的一个运算表达式,使运算结果为空集的表达式可以是P(CIQ);同理满足PQRI,使运算结果为空集的表达式可以是(PQ)(CIR),或(PQ) (CIR)答案不唯一 2设A=(x,y)|y2-x-1=0,B=(x,y)|4x2+2x-2y+5=0,C=(x,y)|y=kx+b,是否存在k、bN,使得(AB)C=,证明此结论4x2+(2-2k)x+(5+2b)=0BC=,2(1-k)2-4(5-2b)0k2-2k+8b-190,从而8b20,
19、即b25 由及bN,得b=2代入由10和2|2x|;;2x2+mx-10 若同时满足、的x也满足,求m的取值范围; 若满足的x至少满足、中的一个,求m的取值范围 【解析】 (1)若同时满足、的x也满足,即求出不等式、的交集是的解集的子集;第(2)问,若满足的x至少满足、中的一个,即满足的x满足、的并集=x|x-1或x4,补集为(-1,4),即方程2x2+mx-10的两根在(-1,4)内,由根的分布可得-m0)解集的子集 又m0 不等式*的解集为1-mx1+m m9,实数m的取值范围是9,+难点5 充要条件的应用1设符合命题p的所有元素组成集合A,符合命题q的所有元素组成集合B,已知q的充分不必
20、要条件是p,则集合A、B的关系是 ( )AAB BA BCB A DA=B所以03,B=x|x2+x-60,则AB= ( )A(-3,-2)(1,+) B(-3,-2)1,2C-3,-2(1,2) D(-,-3)(1,2) 答案:解析:由|2x+1|3,得x1或xb0,全集U=R,集合M=x|bx,N=x|xa,P=x|bx,则P,M,N满足的关系是 ( )AP=MN BP=MNC.P=M(CUN) DP=(CUM)N. 答案:C 解析:取a=4,b=2,画出数轴可判断选C.5 命题P:如果x2+2x+1-a20,那么-1+ax-1;命题q:a1,那么q是p的 ( )A.必要不充分条件 B.充
21、分不必要条件C.充要条件 D既不充分也不必要条件 答案:A 解析:由命题p真,可得a0, 而由a0q:a1是|a+b|1的充分而不必要条件命题q:函数y=的定义域是(-,-1)3,+,则 ( )A.“p或q”为假 B“p且q”为真C.p真q假 D.p假q真 答案:D 答案:240解析:设单元素集合之和为T1=1+2+3+4+5=15,二元集合之和为T2=4T1,同理T3=6T1,T4=4T1,T5=T1,S1+S2+S5=T1+T2+T3+T4+T5=240.10 二次函数y=ax2+bx+c(xR)的部分对应值如下表:x-3-2-101234y60-4-6-6-406则ax2+bx+c0的解
22、集是_ 答案:(-,-2)解析:取三点代入函数中解出不等式即可。11 每天早晨,李强要做完以下几件事,再去公司上班:起床穿衣8分钟;洗脸刷牙5分钟;煮早饭t分钟;吃早饭7分钟;听广播15分钟;整理房间6分钟若李强做完这些事最快需要30分钟,那么煮早饭的时间t最多为_分钟 答案:15解析:起床穿衣8分钟;煮早饭t分钟;吃早饭7分钟;这三项不能同时做.洗脸刷牙5分钟;与听广播15分钟;整理房间6分钟;都可同时做.若李强做完这此事最快需要30分钟,那么煮早饭的时间t最多为30分钟.12 设全集U=R,()解关于x的不等式|x-1|+a-10(aR);()记A为(1)中不等式的解集,集合B=x|sin(x-)+cos(x-)=0若(CUA)B恰有3个元素,求a的取值范围 明理由 答案:解析:E,F=综上所述,、3且-214 已知椭圆方程+=1(ab0),A(m,0)为椭圆外一定点,过A作直线l交椭圆于P、Q两点,且有,Q关于x轴的对称点为B,x轴上一点C,当l变化时,求点C在BP上的充要条件解析:连结AB,因为B、Q关于x轴对称,所以C(xo,O),则B(x2,-y2),可得y1=又将(1)代入(2)中得由于上述解题过程可逆,所以C在BP上的充要条件是C的坐标为